Metamath Proof Explorer


Theorem disjrnmpt2

Description: Disjointness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis disjrnmpt2.1 F = x A B
Assertion disjrnmpt2 Disj x A B Disj y ran F y

Proof

Step Hyp Ref Expression
1 disjrnmpt2.1 F = x A B
2 id y = w y = w
3 2 cbvdisjv Disj y ran F y Disj w ran F w
4 id w = v w = v
5 4 ndisj2 ¬ Disj w ran F w w ran F v ran F w v w v
6 5 biimpi ¬ Disj w ran F w w ran F v ran F w v w v
7 3 6 sylnbi ¬ Disj y ran F y w ran F v ran F w v w v
8 1 elrnmpt w ran F w ran F x A w = B
9 8 ibi w ran F x A w = B
10 nfcv _ z B
11 nfcsb1v _ x z / x B
12 csbeq1a x = z B = z / x B
13 10 11 12 cbvmpt x A B = z A z / x B
14 1 13 eqtri F = z A z / x B
15 14 elrnmpt v ran F v ran F z A v = z / x B
16 15 ibi v ran F z A v = z / x B
17 9 16 anim12i w ran F v ran F x A w = B z A v = z / x B
18 nfv z w = B
19 11 nfeq2 x v = z / x B
20 18 19 reean x A z A w = B v = z / x B x A w = B z A v = z / x B
21 17 20 sylibr w ran F v ran F x A z A w = B v = z / x B
22 21 adantr w ran F v ran F w v w v x A z A w = B v = z / x B
23 nfmpt1 _ x x A B
24 1 23 nfcxfr _ x F
25 24 nfrn _ x ran F
26 25 nfcri x w ran F
27 25 nfcri x v ran F
28 26 27 nfan x w ran F v ran F
29 nfv x w v w v
30 28 29 nfan x w ran F v ran F w v w v
31 simpll w = B v = z / x B x = z w = B
32 12 adantl w = B v = z / x B x = z B = z / x B
33 id v = z / x B v = z / x B
34 33 eqcomd v = z / x B z / x B = v
35 34 ad2antlr w = B v = z / x B x = z z / x B = v
36 31 32 35 3eqtrd w = B v = z / x B x = z w = v
37 36 adantll w v w = B v = z / x B x = z w = v
38 simpll w v w = B v = z / x B x = z w v
39 38 neneqd w v w = B v = z / x B x = z ¬ w = v
40 37 39 pm2.65da w v w = B v = z / x B ¬ x = z
41 40 neqned w v w = B v = z / x B x z
42 41 adantlr w v w v w = B v = z / x B x z
43 id w = B w = B
44 43 eqcomd w = B B = w
45 44 ad2antrl w v w = B v = z / x B B = w
46 34 ad2antll w v w = B v = z / x B z / x B = v
47 45 46 ineq12d w v w = B v = z / x B B z / x B = w v
48 simpl w v w = B v = z / x B w v
49 47 48 eqnetrd w v w = B v = z / x B B z / x B
50 49 adantll w v w v w = B v = z / x B B z / x B
51 42 50 jca w v w v w = B v = z / x B x z B z / x B
52 51 ex w v w v w = B v = z / x B x z B z / x B
53 52 adantl w ran F v ran F w v w v w = B v = z / x B x z B z / x B
54 53 reximdv w ran F v ran F w v w v z A w = B v = z / x B z A x z B z / x B
55 54 a1d w ran F v ran F w v w v x A z A w = B v = z / x B z A x z B z / x B
56 30 55 reximdai w ran F v ran F w v w v x A z A w = B v = z / x B x A z A x z B z / x B
57 22 56 mpd w ran F v ran F w v w v x A z A x z B z / x B
58 57 ex w ran F v ran F w v w v x A z A x z B z / x B
59 58 a1i ¬ Disj y ran F y w ran F v ran F w v w v x A z A x z B z / x B
60 59 rexlimdvv ¬ Disj y ran F y w ran F v ran F w v w v x A z A x z B z / x B
61 7 60 mpd ¬ Disj y ran F y x A z A x z B z / x B
62 csbeq1 u = z u / x B = z / x B
63 62 ndisj2 ¬ Disj u A u / x B u A z A u z u / x B z / x B
64 nfcv _ x A
65 nfv x u z
66 nfcsb1v _ x u / x B
67 66 11 nfin _ x u / x B z / x B
68 nfcv _ x
69 67 68 nfne x u / x B z / x B
70 65 69 nfan x u z u / x B z / x B
71 64 70 nfrex x z A u z u / x B z / x B
72 nfv u z A x z B z / x B
73 neeq1 u = x u z x z
74 csbeq1 u = x u / x B = x / x B
75 csbid x / x B = B
76 74 75 eqtrdi u = x u / x B = B
77 76 ineq1d u = x u / x B z / x B = B z / x B
78 77 neeq1d u = x u / x B z / x B B z / x B
79 73 78 anbi12d u = x u z u / x B z / x B x z B z / x B
80 79 rexbidv u = x z A u z u / x B z / x B z A x z B z / x B
81 71 72 80 cbvrexw u A z A u z u / x B z / x B x A z A x z B z / x B
82 63 81 bitri ¬ Disj u A u / x B x A z A x z B z / x B
83 nfcv _ u B
84 csbeq1a x = u B = u / x B
85 83 66 84 cbvdisj Disj x A B Disj u A u / x B
86 82 85 xchnxbir ¬ Disj x A B x A z A x z B z / x B
87 61 86 sylibr ¬ Disj y ran F y ¬ Disj x A B
88 87 con4i Disj x A B Disj y ran F y