| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjrnmpt2.1 |
|
| 2 |
|
id |
|
| 3 |
2
|
cbvdisjv |
|
| 4 |
|
id |
|
| 5 |
4
|
ndisj2 |
|
| 6 |
5
|
biimpi |
|
| 7 |
3 6
|
sylnbi |
|
| 8 |
1
|
elrnmpt |
|
| 9 |
8
|
ibi |
|
| 10 |
|
nfcv |
|
| 11 |
|
nfcsb1v |
|
| 12 |
|
csbeq1a |
|
| 13 |
10 11 12
|
cbvmpt |
|
| 14 |
1 13
|
eqtri |
|
| 15 |
14
|
elrnmpt |
|
| 16 |
15
|
ibi |
|
| 17 |
9 16
|
anim12i |
|
| 18 |
|
nfv |
|
| 19 |
11
|
nfeq2 |
|
| 20 |
18 19
|
reean |
|
| 21 |
17 20
|
sylibr |
|
| 22 |
21
|
adantr |
|
| 23 |
|
nfmpt1 |
|
| 24 |
1 23
|
nfcxfr |
|
| 25 |
24
|
nfrn |
|
| 26 |
25
|
nfcri |
|
| 27 |
25
|
nfcri |
|
| 28 |
26 27
|
nfan |
|
| 29 |
|
nfv |
|
| 30 |
28 29
|
nfan |
|
| 31 |
|
simpll |
|
| 32 |
12
|
adantl |
|
| 33 |
|
id |
|
| 34 |
33
|
eqcomd |
|
| 35 |
34
|
ad2antlr |
|
| 36 |
31 32 35
|
3eqtrd |
|
| 37 |
36
|
adantll |
|
| 38 |
|
simpll |
|
| 39 |
38
|
neneqd |
|
| 40 |
37 39
|
pm2.65da |
|
| 41 |
40
|
neqned |
|
| 42 |
41
|
adantlr |
|
| 43 |
|
id |
|
| 44 |
43
|
eqcomd |
|
| 45 |
44
|
ad2antrl |
|
| 46 |
34
|
ad2antll |
|
| 47 |
45 46
|
ineq12d |
|
| 48 |
|
simpl |
|
| 49 |
47 48
|
eqnetrd |
|
| 50 |
49
|
adantll |
|
| 51 |
42 50
|
jca |
|
| 52 |
51
|
ex |
|
| 53 |
52
|
adantl |
|
| 54 |
53
|
reximdv |
|
| 55 |
54
|
a1d |
|
| 56 |
30 55
|
reximdai |
|
| 57 |
22 56
|
mpd |
|
| 58 |
57
|
ex |
|
| 59 |
58
|
a1i |
|
| 60 |
59
|
rexlimdvv |
|
| 61 |
7 60
|
mpd |
|
| 62 |
|
csbeq1 |
|
| 63 |
62
|
ndisj2 |
|
| 64 |
|
nfcv |
|
| 65 |
|
nfv |
|
| 66 |
|
nfcsb1v |
|
| 67 |
66 11
|
nfin |
|
| 68 |
|
nfcv |
|
| 69 |
67 68
|
nfne |
|
| 70 |
65 69
|
nfan |
|
| 71 |
64 70
|
nfrexw |
|
| 72 |
|
nfv |
|
| 73 |
|
neeq1 |
|
| 74 |
|
csbeq1 |
|
| 75 |
|
csbid |
|
| 76 |
74 75
|
eqtrdi |
|
| 77 |
76
|
ineq1d |
|
| 78 |
77
|
neeq1d |
|
| 79 |
73 78
|
anbi12d |
|
| 80 |
79
|
rexbidv |
|
| 81 |
71 72 80
|
cbvrexw |
|
| 82 |
63 81
|
bitri |
|
| 83 |
|
nfcv |
|
| 84 |
|
csbeq1a |
|
| 85 |
83 66 84
|
cbvdisj |
|
| 86 |
82 85
|
xchnxbir |
|
| 87 |
61 86
|
sylibr |
|
| 88 |
87
|
con4i |
|