| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjf1.xph |
|
| 2 |
|
disjf1.f |
|
| 3 |
|
disjf1.b |
|
| 4 |
|
disjf1.n0 |
|
| 5 |
|
disjf1.dj |
|
| 6 |
|
nfv |
|
| 7 |
1 6
|
nfan |
|
| 8 |
|
nfcsb1v |
|
| 9 |
|
nfcv |
|
| 10 |
8 9
|
nfel |
|
| 11 |
7 10
|
nfim |
|
| 12 |
|
eleq1w |
|
| 13 |
12
|
anbi2d |
|
| 14 |
|
csbeq1a |
|
| 15 |
14
|
eleq1d |
|
| 16 |
13 15
|
imbi12d |
|
| 17 |
11 16 3
|
chvarfv |
|
| 18 |
17
|
ralrimiva |
|
| 19 |
|
inidm |
|
| 20 |
19
|
eqcomi |
|
| 21 |
20
|
a1i |
|
| 22 |
|
ineq2 |
|
| 23 |
22
|
ad2antlr |
|
| 24 |
|
nfcv |
|
| 25 |
|
nfcsb1v |
|
| 26 |
|
csbeq1a |
|
| 27 |
24 25 26
|
cbvdisj |
|
| 28 |
5 27
|
sylib |
|
| 29 |
28
|
ad3antrrr |
|
| 30 |
|
simpllr |
|
| 31 |
|
neqne |
|
| 32 |
31
|
adantl |
|
| 33 |
|
csbeq1 |
|
| 34 |
|
csbeq1 |
|
| 35 |
33 34
|
disji2 |
|
| 36 |
29 30 32 35
|
syl3anc |
|
| 37 |
21 23 36
|
3eqtrd |
|
| 38 |
|
nfcv |
|
| 39 |
8 38
|
nfne |
|
| 40 |
7 39
|
nfim |
|
| 41 |
14
|
neeq1d |
|
| 42 |
13 41
|
imbi12d |
|
| 43 |
40 42 4
|
chvarfv |
|
| 44 |
43
|
adantrr |
|
| 45 |
44
|
ad2antrr |
|
| 46 |
45
|
neneqd |
|
| 47 |
37 46
|
condan |
|
| 48 |
47
|
ex |
|
| 49 |
48
|
ralrimivva |
|
| 50 |
18 49
|
jca |
|
| 51 |
|
nfcv |
|
| 52 |
51 8 14
|
cbvmpt |
|
| 53 |
2 52
|
eqtri |
|
| 54 |
|
csbeq1 |
|
| 55 |
53 54
|
f1mpt |
|
| 56 |
50 55
|
sylibr |
|