| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaunle.1 |  |-  ( ph -> M e. Meas ) | 
						
							| 2 |  | meaunle.2 |  |-  S = dom M | 
						
							| 3 |  | meaunle.3 |  |-  ( ph -> A e. S ) | 
						
							| 4 |  | meaunle.4 |  |-  ( ph -> B e. S ) | 
						
							| 5 |  | undif2 |  |-  ( A u. ( B \ A ) ) = ( A u. B ) | 
						
							| 6 | 5 | eqcomi |  |-  ( A u. B ) = ( A u. ( B \ A ) ) | 
						
							| 7 | 6 | fveq2i |  |-  ( M ` ( A u. B ) ) = ( M ` ( A u. ( B \ A ) ) ) | 
						
							| 8 | 7 | a1i |  |-  ( ph -> ( M ` ( A u. B ) ) = ( M ` ( A u. ( B \ A ) ) ) ) | 
						
							| 9 | 1 2 | dmmeasal |  |-  ( ph -> S e. SAlg ) | 
						
							| 10 |  | saldifcl2 |  |-  ( ( S e. SAlg /\ B e. S /\ A e. S ) -> ( B \ A ) e. S ) | 
						
							| 11 | 9 4 3 10 | syl3anc |  |-  ( ph -> ( B \ A ) e. S ) | 
						
							| 12 |  | disjdif |  |-  ( A i^i ( B \ A ) ) = (/) | 
						
							| 13 | 12 | a1i |  |-  ( ph -> ( A i^i ( B \ A ) ) = (/) ) | 
						
							| 14 | 1 2 3 11 13 | meadjun |  |-  ( ph -> ( M ` ( A u. ( B \ A ) ) ) = ( ( M ` A ) +e ( M ` ( B \ A ) ) ) ) | 
						
							| 15 | 8 14 | eqtrd |  |-  ( ph -> ( M ` ( A u. B ) ) = ( ( M ` A ) +e ( M ` ( B \ A ) ) ) ) | 
						
							| 16 | 1 2 11 | meaxrcl |  |-  ( ph -> ( M ` ( B \ A ) ) e. RR* ) | 
						
							| 17 | 1 2 4 | meaxrcl |  |-  ( ph -> ( M ` B ) e. RR* ) | 
						
							| 18 | 1 2 3 | meaxrcl |  |-  ( ph -> ( M ` A ) e. RR* ) | 
						
							| 19 |  | difssd |  |-  ( ph -> ( B \ A ) C_ B ) | 
						
							| 20 | 1 2 11 4 19 | meassle |  |-  ( ph -> ( M ` ( B \ A ) ) <_ ( M ` B ) ) | 
						
							| 21 | 16 17 18 20 | xleadd2d |  |-  ( ph -> ( ( M ` A ) +e ( M ` ( B \ A ) ) ) <_ ( ( M ` A ) +e ( M ` B ) ) ) | 
						
							| 22 | 15 21 | eqbrtrd |  |-  ( ph -> ( M ` ( A u. B ) ) <_ ( ( M ` A ) +e ( M ` B ) ) ) |