Step |
Hyp |
Ref |
Expression |
1 |
|
meaunle.1 |
|- ( ph -> M e. Meas ) |
2 |
|
meaunle.2 |
|- S = dom M |
3 |
|
meaunle.3 |
|- ( ph -> A e. S ) |
4 |
|
meaunle.4 |
|- ( ph -> B e. S ) |
5 |
|
undif2 |
|- ( A u. ( B \ A ) ) = ( A u. B ) |
6 |
5
|
eqcomi |
|- ( A u. B ) = ( A u. ( B \ A ) ) |
7 |
6
|
fveq2i |
|- ( M ` ( A u. B ) ) = ( M ` ( A u. ( B \ A ) ) ) |
8 |
7
|
a1i |
|- ( ph -> ( M ` ( A u. B ) ) = ( M ` ( A u. ( B \ A ) ) ) ) |
9 |
1 2
|
dmmeasal |
|- ( ph -> S e. SAlg ) |
10 |
|
saldifcl2 |
|- ( ( S e. SAlg /\ B e. S /\ A e. S ) -> ( B \ A ) e. S ) |
11 |
9 4 3 10
|
syl3anc |
|- ( ph -> ( B \ A ) e. S ) |
12 |
|
disjdif |
|- ( A i^i ( B \ A ) ) = (/) |
13 |
12
|
a1i |
|- ( ph -> ( A i^i ( B \ A ) ) = (/) ) |
14 |
1 2 3 11 13
|
meadjun |
|- ( ph -> ( M ` ( A u. ( B \ A ) ) ) = ( ( M ` A ) +e ( M ` ( B \ A ) ) ) ) |
15 |
8 14
|
eqtrd |
|- ( ph -> ( M ` ( A u. B ) ) = ( ( M ` A ) +e ( M ` ( B \ A ) ) ) ) |
16 |
1 2 11
|
meaxrcl |
|- ( ph -> ( M ` ( B \ A ) ) e. RR* ) |
17 |
1 2 4
|
meaxrcl |
|- ( ph -> ( M ` B ) e. RR* ) |
18 |
1 2 3
|
meaxrcl |
|- ( ph -> ( M ` A ) e. RR* ) |
19 |
|
difssd |
|- ( ph -> ( B \ A ) C_ B ) |
20 |
1 2 11 4 19
|
meassle |
|- ( ph -> ( M ` ( B \ A ) ) <_ ( M ` B ) ) |
21 |
16 17 18 20
|
xleadd2d |
|- ( ph -> ( ( M ` A ) +e ( M ` ( B \ A ) ) ) <_ ( ( M ` A ) +e ( M ` B ) ) ) |
22 |
15 21
|
eqbrtrd |
|- ( ph -> ( M ` ( A u. B ) ) <_ ( ( M ` A ) +e ( M ` B ) ) ) |