Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Glauco Siliprandi Basic measure theory Measures meassre  
				
		 
		
			
		 
		Description:   If the measure of a measurable set is real, then the measure of any of
       its measurable subsets is real.  (Contributed by Glauco Siliprandi , 8-Apr-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						meassre.m ⊢  ( 𝜑   →  𝑀   ∈  Meas )  
					
						meassre.a ⊢  ( 𝜑   →  𝐴   ∈  dom  𝑀  )  
					
						meassre.r ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐴  )  ∈  ℝ )  
					
						meassre.s ⊢  ( 𝜑   →  𝐵   ⊆  𝐴  )  
					
						meassre.b ⊢  ( 𝜑   →  𝐵   ∈  dom  𝑀  )  
				
					Assertion 
					meassre ⊢   ( 𝜑   →  ( 𝑀  ‘ 𝐵  )  ∈  ℝ )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							meassre.m ⊢  ( 𝜑   →  𝑀   ∈  Meas )  
						
							2 
								
							 
							meassre.a ⊢  ( 𝜑   →  𝐴   ∈  dom  𝑀  )  
						
							3 
								
							 
							meassre.r ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐴  )  ∈  ℝ )  
						
							4 
								
							 
							meassre.s ⊢  ( 𝜑   →  𝐵   ⊆  𝐴  )  
						
							5 
								
							 
							meassre.b ⊢  ( 𝜑   →  𝐵   ∈  dom  𝑀  )  
						
							6 
								
							 
							rge0ssre ⊢  ( 0 [,) +∞ )  ⊆  ℝ  
						
							7 
								
							 
							0xr ⊢  0  ∈  ℝ*   
						
							8 
								7 
							 
							a1i ⊢  ( 𝜑   →  0  ∈  ℝ*  )  
						
							9 
								
							 
							pnfxr ⊢  +∞  ∈  ℝ*   
						
							10 
								9 
							 
							a1i ⊢  ( 𝜑   →  +∞  ∈  ℝ*  )  
						
							11 
								
							 
							eqid ⊢  dom  𝑀   =  dom  𝑀   
						
							12 
								1  11  5 
							 
							meaxrcl ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐵  )  ∈  ℝ*  )  
						
							13 
								1  5 
							 
							meage0 ⊢  ( 𝜑   →  0  ≤  ( 𝑀  ‘ 𝐵  ) )  
						
							14 
								3 
							 
							rexrd ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐴  )  ∈  ℝ*  )  
						
							15 
								1  11  5  2  4 
							 
							meassle ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐵  )  ≤  ( 𝑀  ‘ 𝐴  ) )  
						
							16 
								3 
							 
							ltpnfd ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐴  )  <  +∞ )  
						
							17 
								12  14  10  15  16 
							 
							xrlelttrd ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐵  )  <  +∞ )  
						
							18 
								8  10  12  13  17 
							 
							elicod ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐵  )  ∈  ( 0 [,) +∞ ) )  
						
							19 
								6  18 
							 
							sselid ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐵  )  ∈  ℝ )