Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Basic measure theory
Measures
meassre
Metamath Proof Explorer
Description: If the measure of a measurable set is real, then the measure of any of
its measurable subsets is real. (Contributed by Glauco Siliprandi , 8-Apr-2021)
Ref
Expression
Hypotheses
meassre.m
⊢ ( 𝜑 → 𝑀 ∈ Meas )
meassre.a
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑀 )
meassre.r
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ )
meassre.s
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 )
meassre.b
⊢ ( 𝜑 → 𝐵 ∈ dom 𝑀 )
Assertion
meassre
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ ℝ )
Proof
Step
Hyp
Ref
Expression
1
meassre.m
⊢ ( 𝜑 → 𝑀 ∈ Meas )
2
meassre.a
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑀 )
3
meassre.r
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ )
4
meassre.s
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 )
5
meassre.b
⊢ ( 𝜑 → 𝐵 ∈ dom 𝑀 )
6
rge0ssre
⊢ ( 0 [,) +∞ ) ⊆ ℝ
7
0xr
⊢ 0 ∈ ℝ*
8
7
a1i
⊢ ( 𝜑 → 0 ∈ ℝ* )
9
pnfxr
⊢ +∞ ∈ ℝ*
10
9
a1i
⊢ ( 𝜑 → +∞ ∈ ℝ* )
11
eqid
⊢ dom 𝑀 = dom 𝑀
12
1 11 5
meaxrcl
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ ℝ* )
13
1 5
meage0
⊢ ( 𝜑 → 0 ≤ ( 𝑀 ‘ 𝐵 ) )
14
3
rexrd
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ* )
15
1 11 5 2 4
meassle
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ≤ ( 𝑀 ‘ 𝐴 ) )
16
3
ltpnfd
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) < +∞ )
17
12 14 10 15 16
xrlelttrd
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) < +∞ )
18
8 10 12 13 17
elicod
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) )
19
6 18
sseldi
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ ℝ )