Metamath Proof Explorer


Theorem meassre

Description: If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meassre.m φ M Meas
meassre.a φ A dom M
meassre.r φ M A
meassre.s φ B A
meassre.b φ B dom M
Assertion meassre φ M B

Proof

Step Hyp Ref Expression
1 meassre.m φ M Meas
2 meassre.a φ A dom M
3 meassre.r φ M A
4 meassre.s φ B A
5 meassre.b φ B dom M
6 rge0ssre 0 +∞
7 0xr 0 *
8 7 a1i φ 0 *
9 pnfxr +∞ *
10 9 a1i φ +∞ *
11 eqid dom M = dom M
12 1 11 5 meaxrcl φ M B *
13 1 5 meage0 φ 0 M B
14 3 rexrd φ M A *
15 1 11 5 2 4 meassle φ M B M A
16 3 ltpnfd φ M A < +∞
17 12 14 10 15 16 xrlelttrd φ M B < +∞
18 8 10 12 13 17 elicod φ M B 0 +∞
19 6 18 sselid φ M B