Metamath Proof Explorer


Theorem meale0eq0

Description: A measure that is less than or equal to 0 is 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meale0eq0.m φ M Meas
meale0eq0.a φ A dom M
meale0eq0.l φ M A 0
Assertion meale0eq0 φ M A = 0

Proof

Step Hyp Ref Expression
1 meale0eq0.m φ M Meas
2 meale0eq0.a φ A dom M
3 meale0eq0.l φ M A 0
4 eqid dom M = dom M
5 1 4 2 meaxrcl φ M A *
6 0xr 0 *
7 6 a1i φ 0 *
8 1 2 meage0 φ 0 M A
9 5 7 3 8 xrletrid φ M A = 0