Metamath Proof Explorer


Theorem meadif

Description: The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meadif.m φ M Meas
meadif.a φ A dom M
meadif.r φ M A
meadif.b φ B dom M
meadif.s φ B A
Assertion meadif φ M A B = M A M B

Proof

Step Hyp Ref Expression
1 meadif.m φ M Meas
2 meadif.a φ A dom M
3 meadif.r φ M A
4 meadif.b φ B dom M
5 meadif.s φ B A
6 undif B A B A B = A
7 5 6 sylib φ B A B = A
8 7 eqcomd φ A = B A B
9 8 fveq2d φ M A = M B A B
10 eqid dom M = dom M
11 1 10 dmmeasal φ dom M SAlg
12 saldifcl2 dom M SAlg A dom M B dom M A B dom M
13 11 2 4 12 syl3anc φ A B dom M
14 disjdif B A B =
15 14 a1i φ B A B =
16 1 2 3 5 4 meassre φ M B
17 difssd φ A B A
18 1 2 3 17 13 meassre φ M A B
19 1 10 4 13 15 16 18 meadjunre φ M B A B = M B + M A B
20 9 19 eqtr2d φ M B + M A B = M A
21 16 recnd φ M B
22 18 recnd φ M A B
23 3 recnd φ M A
24 21 22 23 addrsub φ M B + M A B = M A M A B = M A M B
25 20 24 mpbid φ M A B = M A M B