Metamath Proof Explorer


Theorem meadif

Description: The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meadif.m φMMeas
meadif.a φAdomM
meadif.r φMA
meadif.b φBdomM
meadif.s φBA
Assertion meadif φMAB=MAMB

Proof

Step Hyp Ref Expression
1 meadif.m φMMeas
2 meadif.a φAdomM
3 meadif.r φMA
4 meadif.b φBdomM
5 meadif.s φBA
6 undif BABAB=A
7 5 6 sylib φBAB=A
8 7 eqcomd φA=BAB
9 8 fveq2d φMA=MBAB
10 eqid domM=domM
11 1 10 dmmeasal φdomMSAlg
12 saldifcl2 domMSAlgAdomMBdomMABdomM
13 11 2 4 12 syl3anc φABdomM
14 disjdif BAB=
15 14 a1i φBAB=
16 1 2 3 5 4 meassre φMB
17 difssd φABA
18 1 2 3 17 13 meassre φMAB
19 1 10 4 13 15 16 18 meadjunre φMBAB=MB+MAB
20 9 19 eqtr2d φMB+MAB=MA
21 16 recnd φMB
22 18 recnd φMAB
23 3 recnd φMA
24 21 22 23 addrsub φMB+MAB=MAMAB=MAMB
25 20 24 mpbid φMAB=MAMB