Metamath Proof Explorer


Theorem meadjunre

Description: The measure of the union of two disjoint sets, with finite measure, is the sum of the measures, Property 112C (a) of Fremlin1 p. 15. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meadjunre.m φ M Meas
meadjunre.x S = dom M
meadjunre.a φ A S
meadjunre.b φ B S
meadjunre.d φ A B =
meadjunre.r φ M A
meadjunre.f φ M B
Assertion meadjunre φ M A B = M A + M B

Proof

Step Hyp Ref Expression
1 meadjunre.m φ M Meas
2 meadjunre.x S = dom M
3 meadjunre.a φ A S
4 meadjunre.b φ B S
5 meadjunre.d φ A B =
6 meadjunre.r φ M A
7 meadjunre.f φ M B
8 1 2 3 4 5 meadjun φ M A B = M A + 𝑒 M B
9 6 7 rexaddd φ M A + 𝑒 M B = M A + M B
10 8 9 eqtrd φ M A B = M A + M B