Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Basic measure theory
Measures
meadjunre
Metamath Proof Explorer
Description: The measure of the union of two disjoint sets, with finite measure, is
the sum of the measures, Property 112C (a) of Fremlin1 p. 15.
(Contributed by Glauco Siliprandi , 8-Apr-2021)
Ref
Expression
Hypotheses
meadjunre.m
⊢ ( 𝜑 → 𝑀 ∈ Meas )
meadjunre.x
⊢ 𝑆 = dom 𝑀
meadjunre.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 )
meadjunre.b
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 )
meadjunre.d
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ )
meadjunre.r
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ )
meadjunre.f
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ ℝ )
Assertion
meadjunre
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑀 ‘ 𝐴 ) + ( 𝑀 ‘ 𝐵 ) ) )
Proof
Step
Hyp
Ref
Expression
1
meadjunre.m
⊢ ( 𝜑 → 𝑀 ∈ Meas )
2
meadjunre.x
⊢ 𝑆 = dom 𝑀
3
meadjunre.a
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 )
4
meadjunre.b
⊢ ( 𝜑 → 𝐵 ∈ 𝑆 )
5
meadjunre.d
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ )
6
meadjunre.r
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ )
7
meadjunre.f
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ ℝ )
8
1 2 3 4 5
meadjun
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) )
9
6 7
rexaddd
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) +𝑒 ( 𝑀 ‘ 𝐵 ) ) = ( ( 𝑀 ‘ 𝐴 ) + ( 𝑀 ‘ 𝐵 ) ) )
10
8 9
eqtrd
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( 𝑀 ‘ 𝐴 ) + ( 𝑀 ‘ 𝐵 ) ) )