Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Glauco Siliprandi Basic measure theory Measures meadjunre  
				
		 
		
			
		 
		Description:   The measure of the union of two disjoint sets, with finite measure, is
       the sum of the measures, Property 112C (a) of Fremlin1  p. 15.
       (Contributed by Glauco Siliprandi , 8-Apr-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						meadjunre.m ⊢  ( 𝜑   →  𝑀   ∈  Meas )  
					
						meadjunre.x ⊢  𝑆   =  dom  𝑀   
					
						meadjunre.a ⊢  ( 𝜑   →  𝐴   ∈  𝑆  )  
					
						meadjunre.b ⊢  ( 𝜑   →  𝐵   ∈  𝑆  )  
					
						meadjunre.d ⊢  ( 𝜑   →  ( 𝐴   ∩  𝐵  )  =  ∅ )  
					
						meadjunre.r ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐴  )  ∈  ℝ )  
					
						meadjunre.f ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐵  )  ∈  ℝ )  
				
					Assertion 
					meadjunre ⊢   ( 𝜑   →  ( 𝑀  ‘ ( 𝐴   ∪  𝐵  ) )  =  ( ( 𝑀  ‘ 𝐴  )  +  ( 𝑀  ‘ 𝐵  ) ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							meadjunre.m ⊢  ( 𝜑   →  𝑀   ∈  Meas )  
						
							2 
								
							 
							meadjunre.x ⊢  𝑆   =  dom  𝑀   
						
							3 
								
							 
							meadjunre.a ⊢  ( 𝜑   →  𝐴   ∈  𝑆  )  
						
							4 
								
							 
							meadjunre.b ⊢  ( 𝜑   →  𝐵   ∈  𝑆  )  
						
							5 
								
							 
							meadjunre.d ⊢  ( 𝜑   →  ( 𝐴   ∩  𝐵  )  =  ∅ )  
						
							6 
								
							 
							meadjunre.r ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐴  )  ∈  ℝ )  
						
							7 
								
							 
							meadjunre.f ⊢  ( 𝜑   →  ( 𝑀  ‘ 𝐵  )  ∈  ℝ )  
						
							8 
								1  2  3  4  5 
							 
							meadjun ⊢  ( 𝜑   →  ( 𝑀  ‘ ( 𝐴   ∪  𝐵  ) )  =  ( ( 𝑀  ‘ 𝐴  )  +𝑒   ( 𝑀  ‘ 𝐵  ) ) )  
						
							9 
								6  7 
							 
							rexaddd ⊢  ( 𝜑   →  ( ( 𝑀  ‘ 𝐴  )  +𝑒   ( 𝑀  ‘ 𝐵  ) )  =  ( ( 𝑀  ‘ 𝐴  )  +  ( 𝑀  ‘ 𝐵  ) ) )  
						
							10 
								8  9 
							 
							eqtrd ⊢  ( 𝜑   →  ( 𝑀  ‘ ( 𝐴   ∪  𝐵  ) )  =  ( ( 𝑀  ‘ 𝐴  )  +  ( 𝑀  ‘ 𝐵  ) ) )