Metamath Proof Explorer


Theorem meadjunre

Description: The measure of the union of two disjoint sets, with finite measure, is the sum of the measures, Property 112C (a) of Fremlin1 p. 15. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meadjunre.m ( 𝜑𝑀 ∈ Meas )
meadjunre.x 𝑆 = dom 𝑀
meadjunre.a ( 𝜑𝐴𝑆 )
meadjunre.b ( 𝜑𝐵𝑆 )
meadjunre.d ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
meadjunre.r ( 𝜑 → ( 𝑀𝐴 ) ∈ ℝ )
meadjunre.f ( 𝜑 → ( 𝑀𝐵 ) ∈ ℝ )
Assertion meadjunre ( 𝜑 → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐴 ) + ( 𝑀𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 meadjunre.m ( 𝜑𝑀 ∈ Meas )
2 meadjunre.x 𝑆 = dom 𝑀
3 meadjunre.a ( 𝜑𝐴𝑆 )
4 meadjunre.b ( 𝜑𝐵𝑆 )
5 meadjunre.d ( 𝜑 → ( 𝐴𝐵 ) = ∅ )
6 meadjunre.r ( 𝜑 → ( 𝑀𝐴 ) ∈ ℝ )
7 meadjunre.f ( 𝜑 → ( 𝑀𝐵 ) ∈ ℝ )
8 1 2 3 4 5 meadjun ( 𝜑 → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) )
9 6 7 rexaddd ( 𝜑 → ( ( 𝑀𝐴 ) +𝑒 ( 𝑀𝐵 ) ) = ( ( 𝑀𝐴 ) + ( 𝑀𝐵 ) ) )
10 8 9 eqtrd ( 𝜑 → ( 𝑀 ‘ ( 𝐴𝐵 ) ) = ( ( 𝑀𝐴 ) + ( 𝑀𝐵 ) ) )