Step |
Hyp |
Ref |
Expression |
1 |
|
meadif.m |
|- ( ph -> M e. Meas ) |
2 |
|
meadif.a |
|- ( ph -> A e. dom M ) |
3 |
|
meadif.r |
|- ( ph -> ( M ` A ) e. RR ) |
4 |
|
meadif.b |
|- ( ph -> B e. dom M ) |
5 |
|
meadif.s |
|- ( ph -> B C_ A ) |
6 |
|
undif |
|- ( B C_ A <-> ( B u. ( A \ B ) ) = A ) |
7 |
5 6
|
sylib |
|- ( ph -> ( B u. ( A \ B ) ) = A ) |
8 |
7
|
eqcomd |
|- ( ph -> A = ( B u. ( A \ B ) ) ) |
9 |
8
|
fveq2d |
|- ( ph -> ( M ` A ) = ( M ` ( B u. ( A \ B ) ) ) ) |
10 |
|
eqid |
|- dom M = dom M |
11 |
1 10
|
dmmeasal |
|- ( ph -> dom M e. SAlg ) |
12 |
|
saldifcl2 |
|- ( ( dom M e. SAlg /\ A e. dom M /\ B e. dom M ) -> ( A \ B ) e. dom M ) |
13 |
11 2 4 12
|
syl3anc |
|- ( ph -> ( A \ B ) e. dom M ) |
14 |
|
disjdif |
|- ( B i^i ( A \ B ) ) = (/) |
15 |
14
|
a1i |
|- ( ph -> ( B i^i ( A \ B ) ) = (/) ) |
16 |
1 2 3 5 4
|
meassre |
|- ( ph -> ( M ` B ) e. RR ) |
17 |
|
difssd |
|- ( ph -> ( A \ B ) C_ A ) |
18 |
1 2 3 17 13
|
meassre |
|- ( ph -> ( M ` ( A \ B ) ) e. RR ) |
19 |
1 10 4 13 15 16 18
|
meadjunre |
|- ( ph -> ( M ` ( B u. ( A \ B ) ) ) = ( ( M ` B ) + ( M ` ( A \ B ) ) ) ) |
20 |
9 19
|
eqtr2d |
|- ( ph -> ( ( M ` B ) + ( M ` ( A \ B ) ) ) = ( M ` A ) ) |
21 |
16
|
recnd |
|- ( ph -> ( M ` B ) e. CC ) |
22 |
18
|
recnd |
|- ( ph -> ( M ` ( A \ B ) ) e. CC ) |
23 |
3
|
recnd |
|- ( ph -> ( M ` A ) e. CC ) |
24 |
21 22 23
|
addrsub |
|- ( ph -> ( ( ( M ` B ) + ( M ` ( A \ B ) ) ) = ( M ` A ) <-> ( M ` ( A \ B ) ) = ( ( M ` A ) - ( M ` B ) ) ) ) |
25 |
20 24
|
mpbid |
|- ( ph -> ( M ` ( A \ B ) ) = ( ( M ` A ) - ( M ` B ) ) ) |