| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meadif.m |  |-  ( ph -> M e. Meas ) | 
						
							| 2 |  | meadif.a |  |-  ( ph -> A e. dom M ) | 
						
							| 3 |  | meadif.r |  |-  ( ph -> ( M ` A ) e. RR ) | 
						
							| 4 |  | meadif.b |  |-  ( ph -> B e. dom M ) | 
						
							| 5 |  | meadif.s |  |-  ( ph -> B C_ A ) | 
						
							| 6 |  | undif |  |-  ( B C_ A <-> ( B u. ( A \ B ) ) = A ) | 
						
							| 7 | 5 6 | sylib |  |-  ( ph -> ( B u. ( A \ B ) ) = A ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ph -> A = ( B u. ( A \ B ) ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( ph -> ( M ` A ) = ( M ` ( B u. ( A \ B ) ) ) ) | 
						
							| 10 |  | eqid |  |-  dom M = dom M | 
						
							| 11 | 1 10 | dmmeasal |  |-  ( ph -> dom M e. SAlg ) | 
						
							| 12 |  | saldifcl2 |  |-  ( ( dom M e. SAlg /\ A e. dom M /\ B e. dom M ) -> ( A \ B ) e. dom M ) | 
						
							| 13 | 11 2 4 12 | syl3anc |  |-  ( ph -> ( A \ B ) e. dom M ) | 
						
							| 14 |  | disjdif |  |-  ( B i^i ( A \ B ) ) = (/) | 
						
							| 15 | 14 | a1i |  |-  ( ph -> ( B i^i ( A \ B ) ) = (/) ) | 
						
							| 16 | 1 2 3 5 4 | meassre |  |-  ( ph -> ( M ` B ) e. RR ) | 
						
							| 17 |  | difssd |  |-  ( ph -> ( A \ B ) C_ A ) | 
						
							| 18 | 1 2 3 17 13 | meassre |  |-  ( ph -> ( M ` ( A \ B ) ) e. RR ) | 
						
							| 19 | 1 10 4 13 15 16 18 | meadjunre |  |-  ( ph -> ( M ` ( B u. ( A \ B ) ) ) = ( ( M ` B ) + ( M ` ( A \ B ) ) ) ) | 
						
							| 20 | 9 19 | eqtr2d |  |-  ( ph -> ( ( M ` B ) + ( M ` ( A \ B ) ) ) = ( M ` A ) ) | 
						
							| 21 | 16 | recnd |  |-  ( ph -> ( M ` B ) e. CC ) | 
						
							| 22 | 18 | recnd |  |-  ( ph -> ( M ` ( A \ B ) ) e. CC ) | 
						
							| 23 | 3 | recnd |  |-  ( ph -> ( M ` A ) e. CC ) | 
						
							| 24 | 21 22 23 | addrsub |  |-  ( ph -> ( ( ( M ` B ) + ( M ` ( A \ B ) ) ) = ( M ` A ) <-> ( M ` ( A \ B ) ) = ( ( M ` A ) - ( M ` B ) ) ) ) | 
						
							| 25 | 20 24 | mpbid |  |-  ( ph -> ( M ` ( A \ B ) ) = ( ( M ` A ) - ( M ` B ) ) ) |