Metamath Proof Explorer


Theorem meadif

Description: The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meadif.m
|- ( ph -> M e. Meas )
meadif.a
|- ( ph -> A e. dom M )
meadif.r
|- ( ph -> ( M ` A ) e. RR )
meadif.b
|- ( ph -> B e. dom M )
meadif.s
|- ( ph -> B C_ A )
Assertion meadif
|- ( ph -> ( M ` ( A \ B ) ) = ( ( M ` A ) - ( M ` B ) ) )

Proof

Step Hyp Ref Expression
1 meadif.m
 |-  ( ph -> M e. Meas )
2 meadif.a
 |-  ( ph -> A e. dom M )
3 meadif.r
 |-  ( ph -> ( M ` A ) e. RR )
4 meadif.b
 |-  ( ph -> B e. dom M )
5 meadif.s
 |-  ( ph -> B C_ A )
6 undif
 |-  ( B C_ A <-> ( B u. ( A \ B ) ) = A )
7 5 6 sylib
 |-  ( ph -> ( B u. ( A \ B ) ) = A )
8 7 eqcomd
 |-  ( ph -> A = ( B u. ( A \ B ) ) )
9 8 fveq2d
 |-  ( ph -> ( M ` A ) = ( M ` ( B u. ( A \ B ) ) ) )
10 eqid
 |-  dom M = dom M
11 1 10 dmmeasal
 |-  ( ph -> dom M e. SAlg )
12 saldifcl2
 |-  ( ( dom M e. SAlg /\ A e. dom M /\ B e. dom M ) -> ( A \ B ) e. dom M )
13 11 2 4 12 syl3anc
 |-  ( ph -> ( A \ B ) e. dom M )
14 disjdif
 |-  ( B i^i ( A \ B ) ) = (/)
15 14 a1i
 |-  ( ph -> ( B i^i ( A \ B ) ) = (/) )
16 1 2 3 5 4 meassre
 |-  ( ph -> ( M ` B ) e. RR )
17 difssd
 |-  ( ph -> ( A \ B ) C_ A )
18 1 2 3 17 13 meassre
 |-  ( ph -> ( M ` ( A \ B ) ) e. RR )
19 1 10 4 13 15 16 18 meadjunre
 |-  ( ph -> ( M ` ( B u. ( A \ B ) ) ) = ( ( M ` B ) + ( M ` ( A \ B ) ) ) )
20 9 19 eqtr2d
 |-  ( ph -> ( ( M ` B ) + ( M ` ( A \ B ) ) ) = ( M ` A ) )
21 16 recnd
 |-  ( ph -> ( M ` B ) e. CC )
22 18 recnd
 |-  ( ph -> ( M ` ( A \ B ) ) e. CC )
23 3 recnd
 |-  ( ph -> ( M ` A ) e. CC )
24 21 22 23 addrsub
 |-  ( ph -> ( ( ( M ` B ) + ( M ` ( A \ B ) ) ) = ( M ` A ) <-> ( M ` ( A \ B ) ) = ( ( M ` A ) - ( M ` B ) ) ) )
25 20 24 mpbid
 |-  ( ph -> ( M ` ( A \ B ) ) = ( ( M ` A ) - ( M ` B ) ) )