| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meaiuninclem.m |
|- ( ph -> M e. Meas ) |
| 2 |
|
meaiuninclem.n |
|- ( ph -> N e. ZZ ) |
| 3 |
|
meaiuninclem.z |
|- Z = ( ZZ>= ` N ) |
| 4 |
|
meaiuninclem.e |
|- ( ph -> E : Z --> dom M ) |
| 5 |
|
meaiuninclem.i |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) |
| 6 |
|
meaiuninclem.b |
|- ( ph -> E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x ) |
| 7 |
|
meaiuninclem.s |
|- S = ( n e. Z |-> ( M ` ( E ` n ) ) ) |
| 8 |
|
meaiuninclem.f |
|- F = ( n e. Z |-> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) |
| 9 |
|
0xr |
|- 0 e. RR* |
| 10 |
9
|
a1i |
|- ( ( ph /\ n e. Z ) -> 0 e. RR* ) |
| 11 |
|
pnfxr |
|- +oo e. RR* |
| 12 |
11
|
a1i |
|- ( ( ph /\ n e. Z ) -> +oo e. RR* ) |
| 13 |
1
|
adantr |
|- ( ( ph /\ n e. Z ) -> M e. Meas ) |
| 14 |
|
eqid |
|- dom M = dom M |
| 15 |
4
|
ffvelcdmda |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) e. dom M ) |
| 16 |
13 14 15
|
meaxrcl |
|- ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) e. RR* ) |
| 17 |
13 15
|
meage0 |
|- ( ( ph /\ n e. Z ) -> 0 <_ ( M ` ( E ` n ) ) ) |
| 18 |
6
|
adantr |
|- ( ( ph /\ n e. Z ) -> E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x ) |
| 19 |
|
simp1 |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> ( ph /\ n e. Z ) ) |
| 20 |
|
simp2 |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> x e. RR ) |
| 21 |
|
simp3 |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> A. n e. Z ( M ` ( E ` n ) ) <_ x ) |
| 22 |
19
|
simprd |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> n e. Z ) |
| 23 |
|
rspa |
|- ( ( A. n e. Z ( M ` ( E ` n ) ) <_ x /\ n e. Z ) -> ( M ` ( E ` n ) ) <_ x ) |
| 24 |
21 22 23
|
syl2anc |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> ( M ` ( E ` n ) ) <_ x ) |
| 25 |
16
|
3ad2ant1 |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> ( M ` ( E ` n ) ) e. RR* ) |
| 26 |
|
rexr |
|- ( x e. RR -> x e. RR* ) |
| 27 |
26
|
3ad2ant2 |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> x e. RR* ) |
| 28 |
11
|
a1i |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> +oo e. RR* ) |
| 29 |
|
simp3 |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> ( M ` ( E ` n ) ) <_ x ) |
| 30 |
|
ltpnf |
|- ( x e. RR -> x < +oo ) |
| 31 |
30
|
3ad2ant2 |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> x < +oo ) |
| 32 |
25 27 28 29 31
|
xrlelttrd |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> ( M ` ( E ` n ) ) < +oo ) |
| 33 |
19 20 24 32
|
syl3anc |
|- ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> ( M ` ( E ` n ) ) < +oo ) |
| 34 |
33
|
3exp |
|- ( ( ph /\ n e. Z ) -> ( x e. RR -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x -> ( M ` ( E ` n ) ) < +oo ) ) ) |
| 35 |
34
|
rexlimdv |
|- ( ( ph /\ n e. Z ) -> ( E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x -> ( M ` ( E ` n ) ) < +oo ) ) |
| 36 |
18 35
|
mpd |
|- ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) < +oo ) |
| 37 |
10 12 16 17 36
|
elicod |
|- ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) e. ( 0 [,) +oo ) ) |
| 38 |
37 7
|
fmptd |
|- ( ph -> S : Z --> ( 0 [,) +oo ) ) |
| 39 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 40 |
39
|
a1i |
|- ( ph -> ( 0 [,) +oo ) C_ RR ) |
| 41 |
38 40
|
fssd |
|- ( ph -> S : Z --> RR ) |
| 42 |
3
|
peano2uzs |
|- ( n e. Z -> ( n + 1 ) e. Z ) |
| 43 |
42
|
adantl |
|- ( ( ph /\ n e. Z ) -> ( n + 1 ) e. Z ) |
| 44 |
4
|
ffvelcdmda |
|- ( ( ph /\ ( n + 1 ) e. Z ) -> ( E ` ( n + 1 ) ) e. dom M ) |
| 45 |
43 44
|
syldan |
|- ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) e. dom M ) |
| 46 |
13 14 15 45 5
|
meassle |
|- ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) <_ ( M ` ( E ` ( n + 1 ) ) ) ) |
| 47 |
7
|
a1i |
|- ( ph -> S = ( n e. Z |-> ( M ` ( E ` n ) ) ) ) |
| 48 |
|
fvexd |
|- ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) e. _V ) |
| 49 |
47 48
|
fvmpt2d |
|- ( ( ph /\ n e. Z ) -> ( S ` n ) = ( M ` ( E ` n ) ) ) |
| 50 |
|
2fveq3 |
|- ( n = m -> ( M ` ( E ` n ) ) = ( M ` ( E ` m ) ) ) |
| 51 |
50
|
cbvmptv |
|- ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( m e. Z |-> ( M ` ( E ` m ) ) ) |
| 52 |
7 51
|
eqtri |
|- S = ( m e. Z |-> ( M ` ( E ` m ) ) ) |
| 53 |
|
2fveq3 |
|- ( m = ( n + 1 ) -> ( M ` ( E ` m ) ) = ( M ` ( E ` ( n + 1 ) ) ) ) |
| 54 |
|
fvexd |
|- ( ( ph /\ n e. Z ) -> ( M ` ( E ` ( n + 1 ) ) ) e. _V ) |
| 55 |
52 53 43 54
|
fvmptd3 |
|- ( ( ph /\ n e. Z ) -> ( S ` ( n + 1 ) ) = ( M ` ( E ` ( n + 1 ) ) ) ) |
| 56 |
49 55
|
breq12d |
|- ( ( ph /\ n e. Z ) -> ( ( S ` n ) <_ ( S ` ( n + 1 ) ) <-> ( M ` ( E ` n ) ) <_ ( M ` ( E ` ( n + 1 ) ) ) ) ) |
| 57 |
46 56
|
mpbird |
|- ( ( ph /\ n e. Z ) -> ( S ` n ) <_ ( S ` ( n + 1 ) ) ) |
| 58 |
49
|
eqcomd |
|- ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) = ( S ` n ) ) |
| 59 |
58
|
breq1d |
|- ( ( ph /\ n e. Z ) -> ( ( M ` ( E ` n ) ) <_ x <-> ( S ` n ) <_ x ) ) |
| 60 |
59
|
ralbidva |
|- ( ph -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x <-> A. n e. Z ( S ` n ) <_ x ) ) |
| 61 |
60
|
biimpd |
|- ( ph -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x -> A. n e. Z ( S ` n ) <_ x ) ) |
| 62 |
61
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x -> A. n e. Z ( S ` n ) <_ x ) ) |
| 63 |
62
|
reximdva |
|- ( ph -> ( E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x -> E. x e. RR A. n e. Z ( S ` n ) <_ x ) ) |
| 64 |
6 63
|
mpd |
|- ( ph -> E. x e. RR A. n e. Z ( S ` n ) <_ x ) |
| 65 |
3 2 41 57 64
|
climsup |
|- ( ph -> S ~~> sup ( ran S , RR , < ) ) |
| 66 |
|
nfv |
|- F/ n ph |
| 67 |
|
nfv |
|- F/ x ph |
| 68 |
|
id |
|- ( n e. Z -> n e. Z ) |
| 69 |
|
fvex |
|- ( E ` n ) e. _V |
| 70 |
69
|
difexi |
|- ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. _V |
| 71 |
70
|
a1i |
|- ( n e. Z -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. _V ) |
| 72 |
8
|
fvmpt2 |
|- ( ( n e. Z /\ ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. _V ) -> ( F ` n ) = ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) |
| 73 |
68 71 72
|
syl2anc |
|- ( n e. Z -> ( F ` n ) = ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) |
| 74 |
73
|
adantl |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) = ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) |
| 75 |
1 14
|
dmmeasal |
|- ( ph -> dom M e. SAlg ) |
| 76 |
75
|
adantr |
|- ( ( ph /\ n e. Z ) -> dom M e. SAlg ) |
| 77 |
|
fzoct |
|- ( N ..^ n ) ~<_ _om |
| 78 |
77
|
a1i |
|- ( ( ph /\ n e. Z ) -> ( N ..^ n ) ~<_ _om ) |
| 79 |
4
|
adantr |
|- ( ( ph /\ i e. ( N ..^ n ) ) -> E : Z --> dom M ) |
| 80 |
|
fzossuz |
|- ( N ..^ n ) C_ ( ZZ>= ` N ) |
| 81 |
3
|
eqcomi |
|- ( ZZ>= ` N ) = Z |
| 82 |
80 81
|
sseqtri |
|- ( N ..^ n ) C_ Z |
| 83 |
82
|
sseli |
|- ( i e. ( N ..^ n ) -> i e. Z ) |
| 84 |
83
|
adantl |
|- ( ( ph /\ i e. ( N ..^ n ) ) -> i e. Z ) |
| 85 |
79 84
|
ffvelcdmd |
|- ( ( ph /\ i e. ( N ..^ n ) ) -> ( E ` i ) e. dom M ) |
| 86 |
85
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ i e. ( N ..^ n ) ) -> ( E ` i ) e. dom M ) |
| 87 |
76 78 86
|
saliuncl |
|- ( ( ph /\ n e. Z ) -> U_ i e. ( N ..^ n ) ( E ` i ) e. dom M ) |
| 88 |
|
saldifcl2 |
|- ( ( dom M e. SAlg /\ ( E ` n ) e. dom M /\ U_ i e. ( N ..^ n ) ( E ` i ) e. dom M ) -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. dom M ) |
| 89 |
76 15 87 88
|
syl3anc |
|- ( ( ph /\ n e. Z ) -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. dom M ) |
| 90 |
74 89
|
eqeltrd |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) e. dom M ) |
| 91 |
13 14 90
|
meaxrcl |
|- ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) e. RR* ) |
| 92 |
13 90
|
meage0 |
|- ( ( ph /\ n e. Z ) -> 0 <_ ( M ` ( F ` n ) ) ) |
| 93 |
|
difssd |
|- ( ( ph /\ n e. Z ) -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) C_ ( E ` n ) ) |
| 94 |
74 93
|
eqsstrd |
|- ( ( ph /\ n e. Z ) -> ( F ` n ) C_ ( E ` n ) ) |
| 95 |
13 14 90 15 94
|
meassle |
|- ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) <_ ( M ` ( E ` n ) ) ) |
| 96 |
91 16 12 95 36
|
xrlelttrd |
|- ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) < +oo ) |
| 97 |
10 12 91 92 96
|
elicod |
|- ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) e. ( 0 [,) +oo ) ) |
| 98 |
|
2fveq3 |
|- ( n = i -> ( M ` ( E ` n ) ) = ( M ` ( E ` i ) ) ) |
| 99 |
98
|
breq1d |
|- ( n = i -> ( ( M ` ( E ` n ) ) <_ x <-> ( M ` ( E ` i ) ) <_ x ) ) |
| 100 |
99
|
cbvralvw |
|- ( A. n e. Z ( M ` ( E ` n ) ) <_ x <-> A. i e. Z ( M ` ( E ` i ) ) <_ x ) |
| 101 |
100
|
biimpi |
|- ( A. n e. Z ( M ` ( E ` n ) ) <_ x -> A. i e. Z ( M ` ( E ` i ) ) <_ x ) |
| 102 |
101
|
adantl |
|- ( ( ph /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> A. i e. Z ( M ` ( E ` i ) ) <_ x ) |
| 103 |
|
eleq1w |
|- ( n = i -> ( n e. Z <-> i e. Z ) ) |
| 104 |
103
|
anbi2d |
|- ( n = i -> ( ( ph /\ n e. Z ) <-> ( ph /\ i e. Z ) ) ) |
| 105 |
|
oveq2 |
|- ( n = i -> ( N ... n ) = ( N ... i ) ) |
| 106 |
105
|
sumeq1d |
|- ( n = i -> sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) = sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) ) |
| 107 |
98 106
|
eqeq12d |
|- ( n = i -> ( ( M ` ( E ` n ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) <-> ( M ` ( E ` i ) ) = sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) ) ) |
| 108 |
104 107
|
imbi12d |
|- ( n = i -> ( ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) ) <-> ( ( ph /\ i e. Z ) -> ( M ` ( E ` i ) ) = sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) ) ) ) |
| 109 |
|
eleq1w |
|- ( m = n -> ( m e. Z <-> n e. Z ) ) |
| 110 |
109
|
anbi2d |
|- ( m = n -> ( ( ph /\ m e. Z ) <-> ( ph /\ n e. Z ) ) ) |
| 111 |
|
oveq2 |
|- ( m = n -> ( N ... m ) = ( N ... n ) ) |
| 112 |
111
|
iuneq1d |
|- ( m = n -> U_ i e. ( N ... m ) ( F ` i ) = U_ i e. ( N ... n ) ( F ` i ) ) |
| 113 |
111
|
iuneq1d |
|- ( m = n -> U_ i e. ( N ... m ) ( E ` i ) = U_ i e. ( N ... n ) ( E ` i ) ) |
| 114 |
112 113
|
eqeq12d |
|- ( m = n -> ( U_ i e. ( N ... m ) ( F ` i ) = U_ i e. ( N ... m ) ( E ` i ) <-> U_ i e. ( N ... n ) ( F ` i ) = U_ i e. ( N ... n ) ( E ` i ) ) ) |
| 115 |
110 114
|
imbi12d |
|- ( m = n -> ( ( ( ph /\ m e. Z ) -> U_ i e. ( N ... m ) ( F ` i ) = U_ i e. ( N ... m ) ( E ` i ) ) <-> ( ( ph /\ n e. Z ) -> U_ i e. ( N ... n ) ( F ` i ) = U_ i e. ( N ... n ) ( E ` i ) ) ) ) |
| 116 |
|
fveq2 |
|- ( i = n -> ( F ` i ) = ( F ` n ) ) |
| 117 |
116
|
cbviunv |
|- U_ i e. ( N ... m ) ( F ` i ) = U_ n e. ( N ... m ) ( F ` n ) |
| 118 |
117
|
a1i |
|- ( ( ph /\ m e. Z ) -> U_ i e. ( N ... m ) ( F ` i ) = U_ n e. ( N ... m ) ( F ` n ) ) |
| 119 |
66 3 4 8
|
iundjiun |
|- ( ph -> ( ( A. m e. Z U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) /\ U_ n e. Z ( F ` n ) = U_ n e. Z ( E ` n ) ) /\ Disj_ n e. Z ( F ` n ) ) ) |
| 120 |
119
|
simplld |
|- ( ph -> A. m e. Z U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) ) |
| 121 |
120
|
adantr |
|- ( ( ph /\ m e. Z ) -> A. m e. Z U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) ) |
| 122 |
|
simpr |
|- ( ( ph /\ m e. Z ) -> m e. Z ) |
| 123 |
|
rspa |
|- ( ( A. m e. Z U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) /\ m e. Z ) -> U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) ) |
| 124 |
121 122 123
|
syl2anc |
|- ( ( ph /\ m e. Z ) -> U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) ) |
| 125 |
|
fveq2 |
|- ( n = i -> ( E ` n ) = ( E ` i ) ) |
| 126 |
125
|
cbviunv |
|- U_ n e. ( N ... m ) ( E ` n ) = U_ i e. ( N ... m ) ( E ` i ) |
| 127 |
126
|
a1i |
|- ( ( ph /\ m e. Z ) -> U_ n e. ( N ... m ) ( E ` n ) = U_ i e. ( N ... m ) ( E ` i ) ) |
| 128 |
118 124 127
|
3eqtrd |
|- ( ( ph /\ m e. Z ) -> U_ i e. ( N ... m ) ( F ` i ) = U_ i e. ( N ... m ) ( E ` i ) ) |
| 129 |
115 128
|
chvarvv |
|- ( ( ph /\ n e. Z ) -> U_ i e. ( N ... n ) ( F ` i ) = U_ i e. ( N ... n ) ( E ` i ) ) |
| 130 |
68 3
|
eleqtrdi |
|- ( n e. Z -> n e. ( ZZ>= ` N ) ) |
| 131 |
130
|
adantl |
|- ( ( ph /\ n e. Z ) -> n e. ( ZZ>= ` N ) ) |
| 132 |
|
fvoveq1 |
|- ( n = i -> ( E ` ( n + 1 ) ) = ( E ` ( i + 1 ) ) ) |
| 133 |
125 132
|
sseq12d |
|- ( n = i -> ( ( E ` n ) C_ ( E ` ( n + 1 ) ) <-> ( E ` i ) C_ ( E ` ( i + 1 ) ) ) ) |
| 134 |
104 133
|
imbi12d |
|- ( n = i -> ( ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) <-> ( ( ph /\ i e. Z ) -> ( E ` i ) C_ ( E ` ( i + 1 ) ) ) ) ) |
| 135 |
134 5
|
chvarvv |
|- ( ( ph /\ i e. Z ) -> ( E ` i ) C_ ( E ` ( i + 1 ) ) ) |
| 136 |
84 135
|
syldan |
|- ( ( ph /\ i e. ( N ..^ n ) ) -> ( E ` i ) C_ ( E ` ( i + 1 ) ) ) |
| 137 |
136
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ i e. ( N ..^ n ) ) -> ( E ` i ) C_ ( E ` ( i + 1 ) ) ) |
| 138 |
131 137
|
iunincfi |
|- ( ( ph /\ n e. Z ) -> U_ i e. ( N ... n ) ( E ` i ) = ( E ` n ) ) |
| 139 |
129 138
|
eqtr2d |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) = U_ i e. ( N ... n ) ( F ` i ) ) |
| 140 |
139
|
fveq2d |
|- ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) = ( M ` U_ i e. ( N ... n ) ( F ` i ) ) ) |
| 141 |
|
nfv |
|- F/ i ( ph /\ n e. Z ) |
| 142 |
|
elfzuz |
|- ( i e. ( N ... n ) -> i e. ( ZZ>= ` N ) ) |
| 143 |
142 81
|
eleqtrdi |
|- ( i e. ( N ... n ) -> i e. Z ) |
| 144 |
143
|
adantl |
|- ( ( ph /\ i e. ( N ... n ) ) -> i e. Z ) |
| 145 |
|
fveq2 |
|- ( n = i -> ( F ` n ) = ( F ` i ) ) |
| 146 |
145
|
eleq1d |
|- ( n = i -> ( ( F ` n ) e. dom M <-> ( F ` i ) e. dom M ) ) |
| 147 |
104 146
|
imbi12d |
|- ( n = i -> ( ( ( ph /\ n e. Z ) -> ( F ` n ) e. dom M ) <-> ( ( ph /\ i e. Z ) -> ( F ` i ) e. dom M ) ) ) |
| 148 |
147 90
|
chvarvv |
|- ( ( ph /\ i e. Z ) -> ( F ` i ) e. dom M ) |
| 149 |
144 148
|
syldan |
|- ( ( ph /\ i e. ( N ... n ) ) -> ( F ` i ) e. dom M ) |
| 150 |
149
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ i e. ( N ... n ) ) -> ( F ` i ) e. dom M ) |
| 151 |
|
fzct |
|- ( N ... n ) ~<_ _om |
| 152 |
151
|
a1i |
|- ( ( ph /\ n e. Z ) -> ( N ... n ) ~<_ _om ) |
| 153 |
144
|
ssd |
|- ( ph -> ( N ... n ) C_ Z ) |
| 154 |
119
|
simprd |
|- ( ph -> Disj_ n e. Z ( F ` n ) ) |
| 155 |
145
|
cbvdisjv |
|- ( Disj_ n e. Z ( F ` n ) <-> Disj_ i e. Z ( F ` i ) ) |
| 156 |
154 155
|
sylib |
|- ( ph -> Disj_ i e. Z ( F ` i ) ) |
| 157 |
|
disjss1 |
|- ( ( N ... n ) C_ Z -> ( Disj_ i e. Z ( F ` i ) -> Disj_ i e. ( N ... n ) ( F ` i ) ) ) |
| 158 |
153 156 157
|
sylc |
|- ( ph -> Disj_ i e. ( N ... n ) ( F ` i ) ) |
| 159 |
158
|
adantr |
|- ( ( ph /\ n e. Z ) -> Disj_ i e. ( N ... n ) ( F ` i ) ) |
| 160 |
141 13 14 150 152 159
|
meadjiun |
|- ( ( ph /\ n e. Z ) -> ( M ` U_ i e. ( N ... n ) ( F ` i ) ) = ( sum^ ` ( i e. ( N ... n ) |-> ( M ` ( F ` i ) ) ) ) ) |
| 161 |
|
fzfid |
|- ( ( ph /\ n e. Z ) -> ( N ... n ) e. Fin ) |
| 162 |
|
2fveq3 |
|- ( n = i -> ( M ` ( F ` n ) ) = ( M ` ( F ` i ) ) ) |
| 163 |
162
|
eleq1d |
|- ( n = i -> ( ( M ` ( F ` n ) ) e. ( 0 [,) +oo ) <-> ( M ` ( F ` i ) ) e. ( 0 [,) +oo ) ) ) |
| 164 |
104 163
|
imbi12d |
|- ( n = i -> ( ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) e. ( 0 [,) +oo ) ) <-> ( ( ph /\ i e. Z ) -> ( M ` ( F ` i ) ) e. ( 0 [,) +oo ) ) ) ) |
| 165 |
164 97
|
chvarvv |
|- ( ( ph /\ i e. Z ) -> ( M ` ( F ` i ) ) e. ( 0 [,) +oo ) ) |
| 166 |
144 165
|
syldan |
|- ( ( ph /\ i e. ( N ... n ) ) -> ( M ` ( F ` i ) ) e. ( 0 [,) +oo ) ) |
| 167 |
166
|
adantlr |
|- ( ( ( ph /\ n e. Z ) /\ i e. ( N ... n ) ) -> ( M ` ( F ` i ) ) e. ( 0 [,) +oo ) ) |
| 168 |
161 167
|
sge0fsummpt |
|- ( ( ph /\ n e. Z ) -> ( sum^ ` ( i e. ( N ... n ) |-> ( M ` ( F ` i ) ) ) ) = sum_ i e. ( N ... n ) ( M ` ( F ` i ) ) ) |
| 169 |
|
2fveq3 |
|- ( i = m -> ( M ` ( F ` i ) ) = ( M ` ( F ` m ) ) ) |
| 170 |
169
|
cbvsumv |
|- sum_ i e. ( N ... n ) ( M ` ( F ` i ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) |
| 171 |
170
|
a1i |
|- ( ( ph /\ n e. Z ) -> sum_ i e. ( N ... n ) ( M ` ( F ` i ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) ) |
| 172 |
168 171
|
eqtrd |
|- ( ( ph /\ n e. Z ) -> ( sum^ ` ( i e. ( N ... n ) |-> ( M ` ( F ` i ) ) ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) ) |
| 173 |
140 160 172
|
3eqtrd |
|- ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) ) |
| 174 |
108 173
|
chvarvv |
|- ( ( ph /\ i e. Z ) -> ( M ` ( E ` i ) ) = sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) ) |
| 175 |
|
2fveq3 |
|- ( m = n -> ( M ` ( F ` m ) ) = ( M ` ( F ` n ) ) ) |
| 176 |
175
|
cbvsumv |
|- sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) = sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) |
| 177 |
176
|
a1i |
|- ( ( ph /\ i e. Z ) -> sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) = sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) |
| 178 |
174 177
|
eqtrd |
|- ( ( ph /\ i e. Z ) -> ( M ` ( E ` i ) ) = sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) |
| 179 |
178
|
breq1d |
|- ( ( ph /\ i e. Z ) -> ( ( M ` ( E ` i ) ) <_ x <-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) ) |
| 180 |
179
|
ralbidva |
|- ( ph -> ( A. i e. Z ( M ` ( E ` i ) ) <_ x <-> A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) ) |
| 181 |
180
|
biimpd |
|- ( ph -> ( A. i e. Z ( M ` ( E ` i ) ) <_ x -> A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) ) |
| 182 |
181
|
imp |
|- ( ( ph /\ A. i e. Z ( M ` ( E ` i ) ) <_ x ) -> A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) |
| 183 |
102 182
|
syldan |
|- ( ( ph /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) |
| 184 |
183
|
ex |
|- ( ph -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x -> A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) ) |
| 185 |
184
|
reximdv |
|- ( ph -> ( E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x -> E. x e. RR A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) ) |
| 186 |
6 185
|
mpd |
|- ( ph -> E. x e. RR A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) |
| 187 |
66 67 2 3 97 186
|
sge0reuzb |
|- ( ph -> ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) = sup ( ran ( i e. Z |-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) , RR , < ) ) |
| 188 |
98
|
cbvmptv |
|- ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( i e. Z |-> ( M ` ( E ` i ) ) ) |
| 189 |
7 188
|
eqtri |
|- S = ( i e. Z |-> ( M ` ( E ` i ) ) ) |
| 190 |
189
|
a1i |
|- ( ph -> S = ( i e. Z |-> ( M ` ( E ` i ) ) ) ) |
| 191 |
178
|
mpteq2dva |
|- ( ph -> ( i e. Z |-> ( M ` ( E ` i ) ) ) = ( i e. Z |-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) ) |
| 192 |
190 191
|
eqtrd |
|- ( ph -> S = ( i e. Z |-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) ) |
| 193 |
192
|
rneqd |
|- ( ph -> ran S = ran ( i e. Z |-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) ) |
| 194 |
193
|
supeq1d |
|- ( ph -> sup ( ran S , RR , < ) = sup ( ran ( i e. Z |-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) , RR , < ) ) |
| 195 |
187 194
|
eqtr4d |
|- ( ph -> ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) = sup ( ran S , RR , < ) ) |
| 196 |
195
|
eqcomd |
|- ( ph -> sup ( ran S , RR , < ) = ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) ) |
| 197 |
3
|
uzct |
|- Z ~<_ _om |
| 198 |
197
|
a1i |
|- ( ph -> Z ~<_ _om ) |
| 199 |
66 1 14 90 198 154
|
meadjiun |
|- ( ph -> ( M ` U_ n e. Z ( F ` n ) ) = ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) ) |
| 200 |
199
|
eqcomd |
|- ( ph -> ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) = ( M ` U_ n e. Z ( F ` n ) ) ) |
| 201 |
119
|
simplrd |
|- ( ph -> U_ n e. Z ( F ` n ) = U_ n e. Z ( E ` n ) ) |
| 202 |
201
|
fveq2d |
|- ( ph -> ( M ` U_ n e. Z ( F ` n ) ) = ( M ` U_ n e. Z ( E ` n ) ) ) |
| 203 |
196 200 202
|
3eqtrd |
|- ( ph -> sup ( ran S , RR , < ) = ( M ` U_ n e. Z ( E ` n ) ) ) |
| 204 |
65 203
|
breqtrd |
|- ( ph -> S ~~> ( M ` U_ n e. Z ( E ` n ) ) ) |