| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiuninclem.m |  |-  ( ph -> M e. Meas ) | 
						
							| 2 |  | meaiuninclem.n |  |-  ( ph -> N e. ZZ ) | 
						
							| 3 |  | meaiuninclem.z |  |-  Z = ( ZZ>= ` N ) | 
						
							| 4 |  | meaiuninclem.e |  |-  ( ph -> E : Z --> dom M ) | 
						
							| 5 |  | meaiuninclem.i |  |-  ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) | 
						
							| 6 |  | meaiuninclem.b |  |-  ( ph -> E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x ) | 
						
							| 7 |  | meaiuninclem.s |  |-  S = ( n e. Z |-> ( M ` ( E ` n ) ) ) | 
						
							| 8 |  | meaiuninclem.f |  |-  F = ( n e. Z |-> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) | 
						
							| 9 |  | 0xr |  |-  0 e. RR* | 
						
							| 10 | 9 | a1i |  |-  ( ( ph /\ n e. Z ) -> 0 e. RR* ) | 
						
							| 11 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 12 | 11 | a1i |  |-  ( ( ph /\ n e. Z ) -> +oo e. RR* ) | 
						
							| 13 | 1 | adantr |  |-  ( ( ph /\ n e. Z ) -> M e. Meas ) | 
						
							| 14 |  | eqid |  |-  dom M = dom M | 
						
							| 15 | 4 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( E ` n ) e. dom M ) | 
						
							| 16 | 13 14 15 | meaxrcl |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) e. RR* ) | 
						
							| 17 | 13 15 | meage0 |  |-  ( ( ph /\ n e. Z ) -> 0 <_ ( M ` ( E ` n ) ) ) | 
						
							| 18 | 6 | adantr |  |-  ( ( ph /\ n e. Z ) -> E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x ) | 
						
							| 19 |  | simp1 |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> ( ph /\ n e. Z ) ) | 
						
							| 20 |  | simp2 |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> x e. RR ) | 
						
							| 21 |  | simp3 |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> A. n e. Z ( M ` ( E ` n ) ) <_ x ) | 
						
							| 22 | 19 | simprd |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> n e. Z ) | 
						
							| 23 |  | rspa |  |-  ( ( A. n e. Z ( M ` ( E ` n ) ) <_ x /\ n e. Z ) -> ( M ` ( E ` n ) ) <_ x ) | 
						
							| 24 | 21 22 23 | syl2anc |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> ( M ` ( E ` n ) ) <_ x ) | 
						
							| 25 | 16 | 3ad2ant1 |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> ( M ` ( E ` n ) ) e. RR* ) | 
						
							| 26 |  | rexr |  |-  ( x e. RR -> x e. RR* ) | 
						
							| 27 | 26 | 3ad2ant2 |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> x e. RR* ) | 
						
							| 28 | 11 | a1i |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> +oo e. RR* ) | 
						
							| 29 |  | simp3 |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> ( M ` ( E ` n ) ) <_ x ) | 
						
							| 30 |  | ltpnf |  |-  ( x e. RR -> x < +oo ) | 
						
							| 31 | 30 | 3ad2ant2 |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> x < +oo ) | 
						
							| 32 | 25 27 28 29 31 | xrlelttrd |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ ( M ` ( E ` n ) ) <_ x ) -> ( M ` ( E ` n ) ) < +oo ) | 
						
							| 33 | 19 20 24 32 | syl3anc |  |-  ( ( ( ph /\ n e. Z ) /\ x e. RR /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> ( M ` ( E ` n ) ) < +oo ) | 
						
							| 34 | 33 | 3exp |  |-  ( ( ph /\ n e. Z ) -> ( x e. RR -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x -> ( M ` ( E ` n ) ) < +oo ) ) ) | 
						
							| 35 | 34 | rexlimdv |  |-  ( ( ph /\ n e. Z ) -> ( E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x -> ( M ` ( E ` n ) ) < +oo ) ) | 
						
							| 36 | 18 35 | mpd |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) < +oo ) | 
						
							| 37 | 10 12 16 17 36 | elicod |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) e. ( 0 [,) +oo ) ) | 
						
							| 38 | 37 7 | fmptd |  |-  ( ph -> S : Z --> ( 0 [,) +oo ) ) | 
						
							| 39 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 40 | 39 | a1i |  |-  ( ph -> ( 0 [,) +oo ) C_ RR ) | 
						
							| 41 | 38 40 | fssd |  |-  ( ph -> S : Z --> RR ) | 
						
							| 42 | 3 | peano2uzs |  |-  ( n e. Z -> ( n + 1 ) e. Z ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ph /\ n e. Z ) -> ( n + 1 ) e. Z ) | 
						
							| 44 | 4 | ffvelcdmda |  |-  ( ( ph /\ ( n + 1 ) e. Z ) -> ( E ` ( n + 1 ) ) e. dom M ) | 
						
							| 45 | 43 44 | syldan |  |-  ( ( ph /\ n e. Z ) -> ( E ` ( n + 1 ) ) e. dom M ) | 
						
							| 46 | 13 14 15 45 5 | meassle |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) <_ ( M ` ( E ` ( n + 1 ) ) ) ) | 
						
							| 47 | 7 | a1i |  |-  ( ph -> S = ( n e. Z |-> ( M ` ( E ` n ) ) ) ) | 
						
							| 48 |  | fvexd |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) e. _V ) | 
						
							| 49 | 47 48 | fvmpt2d |  |-  ( ( ph /\ n e. Z ) -> ( S ` n ) = ( M ` ( E ` n ) ) ) | 
						
							| 50 |  | 2fveq3 |  |-  ( n = m -> ( M ` ( E ` n ) ) = ( M ` ( E ` m ) ) ) | 
						
							| 51 | 50 | cbvmptv |  |-  ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( m e. Z |-> ( M ` ( E ` m ) ) ) | 
						
							| 52 | 7 51 | eqtri |  |-  S = ( m e. Z |-> ( M ` ( E ` m ) ) ) | 
						
							| 53 |  | 2fveq3 |  |-  ( m = ( n + 1 ) -> ( M ` ( E ` m ) ) = ( M ` ( E ` ( n + 1 ) ) ) ) | 
						
							| 54 |  | fvexd |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( E ` ( n + 1 ) ) ) e. _V ) | 
						
							| 55 | 52 53 43 54 | fvmptd3 |  |-  ( ( ph /\ n e. Z ) -> ( S ` ( n + 1 ) ) = ( M ` ( E ` ( n + 1 ) ) ) ) | 
						
							| 56 | 49 55 | breq12d |  |-  ( ( ph /\ n e. Z ) -> ( ( S ` n ) <_ ( S ` ( n + 1 ) ) <-> ( M ` ( E ` n ) ) <_ ( M ` ( E ` ( n + 1 ) ) ) ) ) | 
						
							| 57 | 46 56 | mpbird |  |-  ( ( ph /\ n e. Z ) -> ( S ` n ) <_ ( S ` ( n + 1 ) ) ) | 
						
							| 58 | 49 | eqcomd |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) = ( S ` n ) ) | 
						
							| 59 | 58 | breq1d |  |-  ( ( ph /\ n e. Z ) -> ( ( M ` ( E ` n ) ) <_ x <-> ( S ` n ) <_ x ) ) | 
						
							| 60 | 59 | ralbidva |  |-  ( ph -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x <-> A. n e. Z ( S ` n ) <_ x ) ) | 
						
							| 61 | 60 | biimpd |  |-  ( ph -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x -> A. n e. Z ( S ` n ) <_ x ) ) | 
						
							| 62 | 61 | adantr |  |-  ( ( ph /\ x e. RR ) -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x -> A. n e. Z ( S ` n ) <_ x ) ) | 
						
							| 63 | 62 | reximdva |  |-  ( ph -> ( E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x -> E. x e. RR A. n e. Z ( S ` n ) <_ x ) ) | 
						
							| 64 | 6 63 | mpd |  |-  ( ph -> E. x e. RR A. n e. Z ( S ` n ) <_ x ) | 
						
							| 65 | 3 2 41 57 64 | climsup |  |-  ( ph -> S ~~> sup ( ran S , RR , < ) ) | 
						
							| 66 |  | nfv |  |-  F/ n ph | 
						
							| 67 |  | nfv |  |-  F/ x ph | 
						
							| 68 |  | id |  |-  ( n e. Z -> n e. Z ) | 
						
							| 69 |  | fvex |  |-  ( E ` n ) e. _V | 
						
							| 70 | 69 | difexi |  |-  ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. _V | 
						
							| 71 | 70 | a1i |  |-  ( n e. Z -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. _V ) | 
						
							| 72 | 8 | fvmpt2 |  |-  ( ( n e. Z /\ ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. _V ) -> ( F ` n ) = ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) | 
						
							| 73 | 68 71 72 | syl2anc |  |-  ( n e. Z -> ( F ` n ) = ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) | 
						
							| 74 | 73 | adantl |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) = ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) | 
						
							| 75 | 1 14 | dmmeasal |  |-  ( ph -> dom M e. SAlg ) | 
						
							| 76 | 75 | adantr |  |-  ( ( ph /\ n e. Z ) -> dom M e. SAlg ) | 
						
							| 77 |  | fzoct |  |-  ( N ..^ n ) ~<_ _om | 
						
							| 78 | 77 | a1i |  |-  ( ( ph /\ n e. Z ) -> ( N ..^ n ) ~<_ _om ) | 
						
							| 79 | 4 | adantr |  |-  ( ( ph /\ i e. ( N ..^ n ) ) -> E : Z --> dom M ) | 
						
							| 80 |  | fzossuz |  |-  ( N ..^ n ) C_ ( ZZ>= ` N ) | 
						
							| 81 | 3 | eqcomi |  |-  ( ZZ>= ` N ) = Z | 
						
							| 82 | 80 81 | sseqtri |  |-  ( N ..^ n ) C_ Z | 
						
							| 83 | 82 | sseli |  |-  ( i e. ( N ..^ n ) -> i e. Z ) | 
						
							| 84 | 83 | adantl |  |-  ( ( ph /\ i e. ( N ..^ n ) ) -> i e. Z ) | 
						
							| 85 | 79 84 | ffvelcdmd |  |-  ( ( ph /\ i e. ( N ..^ n ) ) -> ( E ` i ) e. dom M ) | 
						
							| 86 | 85 | adantlr |  |-  ( ( ( ph /\ n e. Z ) /\ i e. ( N ..^ n ) ) -> ( E ` i ) e. dom M ) | 
						
							| 87 | 76 78 86 | saliuncl |  |-  ( ( ph /\ n e. Z ) -> U_ i e. ( N ..^ n ) ( E ` i ) e. dom M ) | 
						
							| 88 |  | saldifcl2 |  |-  ( ( dom M e. SAlg /\ ( E ` n ) e. dom M /\ U_ i e. ( N ..^ n ) ( E ` i ) e. dom M ) -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. dom M ) | 
						
							| 89 | 76 15 87 88 | syl3anc |  |-  ( ( ph /\ n e. Z ) -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) e. dom M ) | 
						
							| 90 | 74 89 | eqeltrd |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) e. dom M ) | 
						
							| 91 | 13 14 90 | meaxrcl |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) e. RR* ) | 
						
							| 92 | 13 90 | meage0 |  |-  ( ( ph /\ n e. Z ) -> 0 <_ ( M ` ( F ` n ) ) ) | 
						
							| 93 |  | difssd |  |-  ( ( ph /\ n e. Z ) -> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) C_ ( E ` n ) ) | 
						
							| 94 | 74 93 | eqsstrd |  |-  ( ( ph /\ n e. Z ) -> ( F ` n ) C_ ( E ` n ) ) | 
						
							| 95 | 13 14 90 15 94 | meassle |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) <_ ( M ` ( E ` n ) ) ) | 
						
							| 96 | 91 16 12 95 36 | xrlelttrd |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) < +oo ) | 
						
							| 97 | 10 12 91 92 96 | elicod |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) e. ( 0 [,) +oo ) ) | 
						
							| 98 |  | 2fveq3 |  |-  ( n = i -> ( M ` ( E ` n ) ) = ( M ` ( E ` i ) ) ) | 
						
							| 99 | 98 | breq1d |  |-  ( n = i -> ( ( M ` ( E ` n ) ) <_ x <-> ( M ` ( E ` i ) ) <_ x ) ) | 
						
							| 100 | 99 | cbvralvw |  |-  ( A. n e. Z ( M ` ( E ` n ) ) <_ x <-> A. i e. Z ( M ` ( E ` i ) ) <_ x ) | 
						
							| 101 | 100 | biimpi |  |-  ( A. n e. Z ( M ` ( E ` n ) ) <_ x -> A. i e. Z ( M ` ( E ` i ) ) <_ x ) | 
						
							| 102 | 101 | adantl |  |-  ( ( ph /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> A. i e. Z ( M ` ( E ` i ) ) <_ x ) | 
						
							| 103 |  | eleq1w |  |-  ( n = i -> ( n e. Z <-> i e. Z ) ) | 
						
							| 104 | 103 | anbi2d |  |-  ( n = i -> ( ( ph /\ n e. Z ) <-> ( ph /\ i e. Z ) ) ) | 
						
							| 105 |  | oveq2 |  |-  ( n = i -> ( N ... n ) = ( N ... i ) ) | 
						
							| 106 | 105 | sumeq1d |  |-  ( n = i -> sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) = sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) ) | 
						
							| 107 | 98 106 | eqeq12d |  |-  ( n = i -> ( ( M ` ( E ` n ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) <-> ( M ` ( E ` i ) ) = sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) ) ) | 
						
							| 108 | 104 107 | imbi12d |  |-  ( n = i -> ( ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) ) <-> ( ( ph /\ i e. Z ) -> ( M ` ( E ` i ) ) = sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) ) ) ) | 
						
							| 109 |  | eleq1w |  |-  ( m = n -> ( m e. Z <-> n e. Z ) ) | 
						
							| 110 | 109 | anbi2d |  |-  ( m = n -> ( ( ph /\ m e. Z ) <-> ( ph /\ n e. Z ) ) ) | 
						
							| 111 |  | oveq2 |  |-  ( m = n -> ( N ... m ) = ( N ... n ) ) | 
						
							| 112 | 111 | iuneq1d |  |-  ( m = n -> U_ i e. ( N ... m ) ( F ` i ) = U_ i e. ( N ... n ) ( F ` i ) ) | 
						
							| 113 | 111 | iuneq1d |  |-  ( m = n -> U_ i e. ( N ... m ) ( E ` i ) = U_ i e. ( N ... n ) ( E ` i ) ) | 
						
							| 114 | 112 113 | eqeq12d |  |-  ( m = n -> ( U_ i e. ( N ... m ) ( F ` i ) = U_ i e. ( N ... m ) ( E ` i ) <-> U_ i e. ( N ... n ) ( F ` i ) = U_ i e. ( N ... n ) ( E ` i ) ) ) | 
						
							| 115 | 110 114 | imbi12d |  |-  ( m = n -> ( ( ( ph /\ m e. Z ) -> U_ i e. ( N ... m ) ( F ` i ) = U_ i e. ( N ... m ) ( E ` i ) ) <-> ( ( ph /\ n e. Z ) -> U_ i e. ( N ... n ) ( F ` i ) = U_ i e. ( N ... n ) ( E ` i ) ) ) ) | 
						
							| 116 |  | fveq2 |  |-  ( i = n -> ( F ` i ) = ( F ` n ) ) | 
						
							| 117 | 116 | cbviunv |  |-  U_ i e. ( N ... m ) ( F ` i ) = U_ n e. ( N ... m ) ( F ` n ) | 
						
							| 118 | 117 | a1i |  |-  ( ( ph /\ m e. Z ) -> U_ i e. ( N ... m ) ( F ` i ) = U_ n e. ( N ... m ) ( F ` n ) ) | 
						
							| 119 | 66 3 4 8 | iundjiun |  |-  ( ph -> ( ( A. m e. Z U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) /\ U_ n e. Z ( F ` n ) = U_ n e. Z ( E ` n ) ) /\ Disj_ n e. Z ( F ` n ) ) ) | 
						
							| 120 | 119 | simplld |  |-  ( ph -> A. m e. Z U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) ) | 
						
							| 121 | 120 | adantr |  |-  ( ( ph /\ m e. Z ) -> A. m e. Z U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) ) | 
						
							| 122 |  | simpr |  |-  ( ( ph /\ m e. Z ) -> m e. Z ) | 
						
							| 123 |  | rspa |  |-  ( ( A. m e. Z U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) /\ m e. Z ) -> U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) ) | 
						
							| 124 | 121 122 123 | syl2anc |  |-  ( ( ph /\ m e. Z ) -> U_ n e. ( N ... m ) ( F ` n ) = U_ n e. ( N ... m ) ( E ` n ) ) | 
						
							| 125 |  | fveq2 |  |-  ( n = i -> ( E ` n ) = ( E ` i ) ) | 
						
							| 126 | 125 | cbviunv |  |-  U_ n e. ( N ... m ) ( E ` n ) = U_ i e. ( N ... m ) ( E ` i ) | 
						
							| 127 | 126 | a1i |  |-  ( ( ph /\ m e. Z ) -> U_ n e. ( N ... m ) ( E ` n ) = U_ i e. ( N ... m ) ( E ` i ) ) | 
						
							| 128 | 118 124 127 | 3eqtrd |  |-  ( ( ph /\ m e. Z ) -> U_ i e. ( N ... m ) ( F ` i ) = U_ i e. ( N ... m ) ( E ` i ) ) | 
						
							| 129 | 115 128 | chvarvv |  |-  ( ( ph /\ n e. Z ) -> U_ i e. ( N ... n ) ( F ` i ) = U_ i e. ( N ... n ) ( E ` i ) ) | 
						
							| 130 | 68 3 | eleqtrdi |  |-  ( n e. Z -> n e. ( ZZ>= ` N ) ) | 
						
							| 131 | 130 | adantl |  |-  ( ( ph /\ n e. Z ) -> n e. ( ZZ>= ` N ) ) | 
						
							| 132 |  | fvoveq1 |  |-  ( n = i -> ( E ` ( n + 1 ) ) = ( E ` ( i + 1 ) ) ) | 
						
							| 133 | 125 132 | sseq12d |  |-  ( n = i -> ( ( E ` n ) C_ ( E ` ( n + 1 ) ) <-> ( E ` i ) C_ ( E ` ( i + 1 ) ) ) ) | 
						
							| 134 | 104 133 | imbi12d |  |-  ( n = i -> ( ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) <-> ( ( ph /\ i e. Z ) -> ( E ` i ) C_ ( E ` ( i + 1 ) ) ) ) ) | 
						
							| 135 | 134 5 | chvarvv |  |-  ( ( ph /\ i e. Z ) -> ( E ` i ) C_ ( E ` ( i + 1 ) ) ) | 
						
							| 136 | 84 135 | syldan |  |-  ( ( ph /\ i e. ( N ..^ n ) ) -> ( E ` i ) C_ ( E ` ( i + 1 ) ) ) | 
						
							| 137 | 136 | adantlr |  |-  ( ( ( ph /\ n e. Z ) /\ i e. ( N ..^ n ) ) -> ( E ` i ) C_ ( E ` ( i + 1 ) ) ) | 
						
							| 138 | 131 137 | iunincfi |  |-  ( ( ph /\ n e. Z ) -> U_ i e. ( N ... n ) ( E ` i ) = ( E ` n ) ) | 
						
							| 139 | 129 138 | eqtr2d |  |-  ( ( ph /\ n e. Z ) -> ( E ` n ) = U_ i e. ( N ... n ) ( F ` i ) ) | 
						
							| 140 | 139 | fveq2d |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) = ( M ` U_ i e. ( N ... n ) ( F ` i ) ) ) | 
						
							| 141 |  | nfv |  |-  F/ i ( ph /\ n e. Z ) | 
						
							| 142 |  | elfzuz |  |-  ( i e. ( N ... n ) -> i e. ( ZZ>= ` N ) ) | 
						
							| 143 | 142 81 | eleqtrdi |  |-  ( i e. ( N ... n ) -> i e. Z ) | 
						
							| 144 | 143 | adantl |  |-  ( ( ph /\ i e. ( N ... n ) ) -> i e. Z ) | 
						
							| 145 |  | fveq2 |  |-  ( n = i -> ( F ` n ) = ( F ` i ) ) | 
						
							| 146 | 145 | eleq1d |  |-  ( n = i -> ( ( F ` n ) e. dom M <-> ( F ` i ) e. dom M ) ) | 
						
							| 147 | 104 146 | imbi12d |  |-  ( n = i -> ( ( ( ph /\ n e. Z ) -> ( F ` n ) e. dom M ) <-> ( ( ph /\ i e. Z ) -> ( F ` i ) e. dom M ) ) ) | 
						
							| 148 | 147 90 | chvarvv |  |-  ( ( ph /\ i e. Z ) -> ( F ` i ) e. dom M ) | 
						
							| 149 | 144 148 | syldan |  |-  ( ( ph /\ i e. ( N ... n ) ) -> ( F ` i ) e. dom M ) | 
						
							| 150 | 149 | adantlr |  |-  ( ( ( ph /\ n e. Z ) /\ i e. ( N ... n ) ) -> ( F ` i ) e. dom M ) | 
						
							| 151 |  | fzct |  |-  ( N ... n ) ~<_ _om | 
						
							| 152 | 151 | a1i |  |-  ( ( ph /\ n e. Z ) -> ( N ... n ) ~<_ _om ) | 
						
							| 153 | 144 | ssd |  |-  ( ph -> ( N ... n ) C_ Z ) | 
						
							| 154 | 119 | simprd |  |-  ( ph -> Disj_ n e. Z ( F ` n ) ) | 
						
							| 155 | 145 | cbvdisjv |  |-  ( Disj_ n e. Z ( F ` n ) <-> Disj_ i e. Z ( F ` i ) ) | 
						
							| 156 | 154 155 | sylib |  |-  ( ph -> Disj_ i e. Z ( F ` i ) ) | 
						
							| 157 |  | disjss1 |  |-  ( ( N ... n ) C_ Z -> ( Disj_ i e. Z ( F ` i ) -> Disj_ i e. ( N ... n ) ( F ` i ) ) ) | 
						
							| 158 | 153 156 157 | sylc |  |-  ( ph -> Disj_ i e. ( N ... n ) ( F ` i ) ) | 
						
							| 159 | 158 | adantr |  |-  ( ( ph /\ n e. Z ) -> Disj_ i e. ( N ... n ) ( F ` i ) ) | 
						
							| 160 | 141 13 14 150 152 159 | meadjiun |  |-  ( ( ph /\ n e. Z ) -> ( M ` U_ i e. ( N ... n ) ( F ` i ) ) = ( sum^ ` ( i e. ( N ... n ) |-> ( M ` ( F ` i ) ) ) ) ) | 
						
							| 161 |  | fzfid |  |-  ( ( ph /\ n e. Z ) -> ( N ... n ) e. Fin ) | 
						
							| 162 |  | 2fveq3 |  |-  ( n = i -> ( M ` ( F ` n ) ) = ( M ` ( F ` i ) ) ) | 
						
							| 163 | 162 | eleq1d |  |-  ( n = i -> ( ( M ` ( F ` n ) ) e. ( 0 [,) +oo ) <-> ( M ` ( F ` i ) ) e. ( 0 [,) +oo ) ) ) | 
						
							| 164 | 104 163 | imbi12d |  |-  ( n = i -> ( ( ( ph /\ n e. Z ) -> ( M ` ( F ` n ) ) e. ( 0 [,) +oo ) ) <-> ( ( ph /\ i e. Z ) -> ( M ` ( F ` i ) ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 165 | 164 97 | chvarvv |  |-  ( ( ph /\ i e. Z ) -> ( M ` ( F ` i ) ) e. ( 0 [,) +oo ) ) | 
						
							| 166 | 144 165 | syldan |  |-  ( ( ph /\ i e. ( N ... n ) ) -> ( M ` ( F ` i ) ) e. ( 0 [,) +oo ) ) | 
						
							| 167 | 166 | adantlr |  |-  ( ( ( ph /\ n e. Z ) /\ i e. ( N ... n ) ) -> ( M ` ( F ` i ) ) e. ( 0 [,) +oo ) ) | 
						
							| 168 | 161 167 | sge0fsummpt |  |-  ( ( ph /\ n e. Z ) -> ( sum^ ` ( i e. ( N ... n ) |-> ( M ` ( F ` i ) ) ) ) = sum_ i e. ( N ... n ) ( M ` ( F ` i ) ) ) | 
						
							| 169 |  | 2fveq3 |  |-  ( i = m -> ( M ` ( F ` i ) ) = ( M ` ( F ` m ) ) ) | 
						
							| 170 | 169 | cbvsumv |  |-  sum_ i e. ( N ... n ) ( M ` ( F ` i ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) | 
						
							| 171 | 170 | a1i |  |-  ( ( ph /\ n e. Z ) -> sum_ i e. ( N ... n ) ( M ` ( F ` i ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) ) | 
						
							| 172 | 168 171 | eqtrd |  |-  ( ( ph /\ n e. Z ) -> ( sum^ ` ( i e. ( N ... n ) |-> ( M ` ( F ` i ) ) ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) ) | 
						
							| 173 | 140 160 172 | 3eqtrd |  |-  ( ( ph /\ n e. Z ) -> ( M ` ( E ` n ) ) = sum_ m e. ( N ... n ) ( M ` ( F ` m ) ) ) | 
						
							| 174 | 108 173 | chvarvv |  |-  ( ( ph /\ i e. Z ) -> ( M ` ( E ` i ) ) = sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) ) | 
						
							| 175 |  | 2fveq3 |  |-  ( m = n -> ( M ` ( F ` m ) ) = ( M ` ( F ` n ) ) ) | 
						
							| 176 | 175 | cbvsumv |  |-  sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) = sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) | 
						
							| 177 | 176 | a1i |  |-  ( ( ph /\ i e. Z ) -> sum_ m e. ( N ... i ) ( M ` ( F ` m ) ) = sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) | 
						
							| 178 | 174 177 | eqtrd |  |-  ( ( ph /\ i e. Z ) -> ( M ` ( E ` i ) ) = sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) | 
						
							| 179 | 178 | breq1d |  |-  ( ( ph /\ i e. Z ) -> ( ( M ` ( E ` i ) ) <_ x <-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) ) | 
						
							| 180 | 179 | ralbidva |  |-  ( ph -> ( A. i e. Z ( M ` ( E ` i ) ) <_ x <-> A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) ) | 
						
							| 181 | 180 | biimpd |  |-  ( ph -> ( A. i e. Z ( M ` ( E ` i ) ) <_ x -> A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) ) | 
						
							| 182 | 181 | imp |  |-  ( ( ph /\ A. i e. Z ( M ` ( E ` i ) ) <_ x ) -> A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) | 
						
							| 183 | 102 182 | syldan |  |-  ( ( ph /\ A. n e. Z ( M ` ( E ` n ) ) <_ x ) -> A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) | 
						
							| 184 | 183 | ex |  |-  ( ph -> ( A. n e. Z ( M ` ( E ` n ) ) <_ x -> A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) ) | 
						
							| 185 | 184 | reximdv |  |-  ( ph -> ( E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x -> E. x e. RR A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) ) | 
						
							| 186 | 6 185 | mpd |  |-  ( ph -> E. x e. RR A. i e. Z sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) <_ x ) | 
						
							| 187 | 66 67 2 3 97 186 | sge0reuzb |  |-  ( ph -> ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) = sup ( ran ( i e. Z |-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) , RR , < ) ) | 
						
							| 188 | 98 | cbvmptv |  |-  ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( i e. Z |-> ( M ` ( E ` i ) ) ) | 
						
							| 189 | 7 188 | eqtri |  |-  S = ( i e. Z |-> ( M ` ( E ` i ) ) ) | 
						
							| 190 | 189 | a1i |  |-  ( ph -> S = ( i e. Z |-> ( M ` ( E ` i ) ) ) ) | 
						
							| 191 | 178 | mpteq2dva |  |-  ( ph -> ( i e. Z |-> ( M ` ( E ` i ) ) ) = ( i e. Z |-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) ) | 
						
							| 192 | 190 191 | eqtrd |  |-  ( ph -> S = ( i e. Z |-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) ) | 
						
							| 193 | 192 | rneqd |  |-  ( ph -> ran S = ran ( i e. Z |-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) ) | 
						
							| 194 | 193 | supeq1d |  |-  ( ph -> sup ( ran S , RR , < ) = sup ( ran ( i e. Z |-> sum_ n e. ( N ... i ) ( M ` ( F ` n ) ) ) , RR , < ) ) | 
						
							| 195 | 187 194 | eqtr4d |  |-  ( ph -> ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) = sup ( ran S , RR , < ) ) | 
						
							| 196 | 195 | eqcomd |  |-  ( ph -> sup ( ran S , RR , < ) = ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) ) | 
						
							| 197 | 3 | uzct |  |-  Z ~<_ _om | 
						
							| 198 | 197 | a1i |  |-  ( ph -> Z ~<_ _om ) | 
						
							| 199 | 66 1 14 90 198 154 | meadjiun |  |-  ( ph -> ( M ` U_ n e. Z ( F ` n ) ) = ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) ) | 
						
							| 200 | 199 | eqcomd |  |-  ( ph -> ( sum^ ` ( n e. Z |-> ( M ` ( F ` n ) ) ) ) = ( M ` U_ n e. Z ( F ` n ) ) ) | 
						
							| 201 | 119 | simplrd |  |-  ( ph -> U_ n e. Z ( F ` n ) = U_ n e. Z ( E ` n ) ) | 
						
							| 202 | 201 | fveq2d |  |-  ( ph -> ( M ` U_ n e. Z ( F ` n ) ) = ( M ` U_ n e. Z ( E ` n ) ) ) | 
						
							| 203 | 196 200 202 | 3eqtrd |  |-  ( ph -> sup ( ran S , RR , < ) = ( M ` U_ n e. Z ( E ` n ) ) ) | 
						
							| 204 | 65 203 | breqtrd |  |-  ( ph -> S ~~> ( M ` U_ n e. Z ( E ` n ) ) ) |