| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiuninc.m |  |-  ( ph -> M e. Meas ) | 
						
							| 2 |  | meaiuninc.n |  |-  ( ph -> N e. ZZ ) | 
						
							| 3 |  | meaiuninc.z |  |-  Z = ( ZZ>= ` N ) | 
						
							| 4 |  | meaiuninc.e |  |-  ( ph -> E : Z --> dom M ) | 
						
							| 5 |  | meaiuninc.i |  |-  ( ( ph /\ n e. Z ) -> ( E ` n ) C_ ( E ` ( n + 1 ) ) ) | 
						
							| 6 |  | meaiuninc.x |  |-  ( ph -> E. x e. RR A. n e. Z ( M ` ( E ` n ) ) <_ x ) | 
						
							| 7 |  | meaiuninc.s |  |-  S = ( n e. Z |-> ( M ` ( E ` n ) ) ) | 
						
							| 8 |  | 2fveq3 |  |-  ( n = m -> ( M ` ( E ` n ) ) = ( M ` ( E ` m ) ) ) | 
						
							| 9 | 8 | cbvmptv |  |-  ( n e. Z |-> ( M ` ( E ` n ) ) ) = ( m e. Z |-> ( M ` ( E ` m ) ) ) | 
						
							| 10 | 7 9 | eqtri |  |-  S = ( m e. Z |-> ( M ` ( E ` m ) ) ) | 
						
							| 11 | 10 | a1i |  |-  ( ph -> S = ( m e. Z |-> ( M ` ( E ` m ) ) ) ) | 
						
							| 12 | 10 7 | eqtr3i |  |-  ( m e. Z |-> ( M ` ( E ` m ) ) ) = ( n e. Z |-> ( M ` ( E ` n ) ) ) | 
						
							| 13 |  | fveq2 |  |-  ( k = i -> ( E ` k ) = ( E ` i ) ) | 
						
							| 14 | 13 | cbviunv |  |-  U_ k e. ( N ..^ m ) ( E ` k ) = U_ i e. ( N ..^ m ) ( E ` i ) | 
						
							| 15 | 14 | difeq2i |  |-  ( ( E ` m ) \ U_ k e. ( N ..^ m ) ( E ` k ) ) = ( ( E ` m ) \ U_ i e. ( N ..^ m ) ( E ` i ) ) | 
						
							| 16 | 15 | mpteq2i |  |-  ( m e. Z |-> ( ( E ` m ) \ U_ k e. ( N ..^ m ) ( E ` k ) ) ) = ( m e. Z |-> ( ( E ` m ) \ U_ i e. ( N ..^ m ) ( E ` i ) ) ) | 
						
							| 17 |  | fveq2 |  |-  ( m = n -> ( E ` m ) = ( E ` n ) ) | 
						
							| 18 |  | oveq2 |  |-  ( m = n -> ( N ..^ m ) = ( N ..^ n ) ) | 
						
							| 19 | 18 | iuneq1d |  |-  ( m = n -> U_ i e. ( N ..^ m ) ( E ` i ) = U_ i e. ( N ..^ n ) ( E ` i ) ) | 
						
							| 20 | 17 19 | difeq12d |  |-  ( m = n -> ( ( E ` m ) \ U_ i e. ( N ..^ m ) ( E ` i ) ) = ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) | 
						
							| 21 | 20 | cbvmptv |  |-  ( m e. Z |-> ( ( E ` m ) \ U_ i e. ( N ..^ m ) ( E ` i ) ) ) = ( n e. Z |-> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) | 
						
							| 22 | 16 21 | eqtri |  |-  ( m e. Z |-> ( ( E ` m ) \ U_ k e. ( N ..^ m ) ( E ` k ) ) ) = ( n e. Z |-> ( ( E ` n ) \ U_ i e. ( N ..^ n ) ( E ` i ) ) ) | 
						
							| 23 | 1 2 3 4 5 6 12 22 | meaiuninclem |  |-  ( ph -> ( m e. Z |-> ( M ` ( E ` m ) ) ) ~~> ( M ` U_ n e. Z ( E ` n ) ) ) | 
						
							| 24 | 11 23 | eqbrtrd |  |-  ( ph -> S ~~> ( M ` U_ n e. Z ( E ` n ) ) ) |