| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiuninc.m | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 2 |  | meaiuninc.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | meaiuninc.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 4 |  | meaiuninc.e | ⊢ ( 𝜑  →  𝐸 : 𝑍 ⟶ dom  𝑀 ) | 
						
							| 5 |  | meaiuninc.i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 6 |  | meaiuninc.x | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 7 |  | meaiuninc.s | ⊢ 𝑆  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 8 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 9 | 8 | cbvmptv | ⊢ ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑚  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 10 | 7 9 | eqtri | ⊢ 𝑆  =  ( 𝑚  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  𝑆  =  ( 𝑚  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) ) | 
						
							| 12 | 10 7 | eqtr3i | ⊢ ( 𝑚  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) )  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑘  =  𝑖  →  ( 𝐸 ‘ 𝑘 )  =  ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 14 | 13 | cbviunv | ⊢ ∪  𝑘  ∈  ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑘 )  =  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) | 
						
							| 15 | 14 | difeq2i | ⊢ ( ( 𝐸 ‘ 𝑚 )  ∖  ∪  𝑘  ∈  ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑘 ) )  =  ( ( 𝐸 ‘ 𝑚 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 16 | 15 | mpteq2i | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝑚 )  ∖  ∪  𝑘  ∈  ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑘 ) ) )  =  ( 𝑚  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝑚 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐸 ‘ 𝑚 )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑁 ..^ 𝑚 )  =  ( 𝑁 ..^ 𝑛 ) ) | 
						
							| 19 | 18 | iuneq1d | ⊢ ( 𝑚  =  𝑛  →  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 20 | 17 19 | difeq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐸 ‘ 𝑚 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) )  =  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 21 | 20 | cbvmptv | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝑚 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) )  =  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 22 | 16 21 | eqtri | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝑚 )  ∖  ∪  𝑘  ∈  ( 𝑁 ..^ 𝑚 ) ( 𝐸 ‘ 𝑘 ) ) )  =  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 23 | 1 2 3 4 5 6 12 22 | meaiuninclem | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) )  ⇝  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 24 | 11 23 | eqbrtrd | ⊢ ( 𝜑  →  𝑆  ⇝  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |