| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meaiuninclem.m | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 2 |  | meaiuninclem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 3 |  | meaiuninclem.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 4 |  | meaiuninclem.e | ⊢ ( 𝜑  →  𝐸 : 𝑍 ⟶ dom  𝑀 ) | 
						
							| 5 |  | meaiuninclem.i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 6 |  | meaiuninclem.b | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 7 |  | meaiuninclem.s | ⊢ 𝑆  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 8 |  | meaiuninclem.f | ⊢ 𝐹  =  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 9 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  0  ∈  ℝ* ) | 
						
							| 11 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 12 | 11 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  +∞  ∈  ℝ* ) | 
						
							| 13 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑀  ∈  Meas ) | 
						
							| 14 |  | eqid | ⊢ dom  𝑀  =  dom  𝑀 | 
						
							| 15 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑀 ) | 
						
							| 16 | 13 14 15 | meaxrcl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 17 | 13 15 | meage0 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  0  ≤  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 18 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 19 |  | simp1 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ( 𝜑  ∧  𝑛  ∈  𝑍 ) ) | 
						
							| 20 |  | simp2 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  𝑥  ∈  ℝ ) | 
						
							| 21 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 22 | 19 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  𝑛  ∈  𝑍 ) | 
						
							| 23 |  | rspa | ⊢ ( ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 24 | 21 22 23 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 25 | 16 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 26 |  | rexr | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  ∈  ℝ* ) | 
						
							| 27 | 26 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  𝑥  ∈  ℝ* ) | 
						
							| 28 | 11 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  +∞  ∈  ℝ* ) | 
						
							| 29 |  | simp3 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 30 |  | ltpnf | ⊢ ( 𝑥  ∈  ℝ  →  𝑥  <  +∞ ) | 
						
							| 31 | 30 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  𝑥  <  +∞ ) | 
						
							| 32 | 25 27 28 29 31 | xrlelttrd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  <  +∞ ) | 
						
							| 33 | 19 20 24 32 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑥  ∈  ℝ  ∧  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  <  +∞ ) | 
						
							| 34 | 33 | 3exp | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑥  ∈  ℝ  →  ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  <  +∞ ) ) ) | 
						
							| 35 | 34 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  <  +∞ ) ) | 
						
							| 36 | 18 35 | mpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  <  +∞ ) | 
						
							| 37 | 10 12 16 17 36 | elicod | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 38 | 37 7 | fmptd | ⊢ ( 𝜑  →  𝑆 : 𝑍 ⟶ ( 0 [,) +∞ ) ) | 
						
							| 39 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  ( 0 [,) +∞ )  ⊆  ℝ ) | 
						
							| 41 | 38 40 | fssd | ⊢ ( 𝜑  →  𝑆 : 𝑍 ⟶ ℝ ) | 
						
							| 42 | 3 | peano2uzs | ⊢ ( 𝑛  ∈  𝑍  →  ( 𝑛  +  1 )  ∈  𝑍 ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑛  +  1 )  ∈  𝑍 ) | 
						
							| 44 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  ( 𝑛  +  1 )  ∈  𝑍 )  →  ( 𝐸 ‘ ( 𝑛  +  1 ) )  ∈  dom  𝑀 ) | 
						
							| 45 | 43 44 | syldan | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ ( 𝑛  +  1 ) )  ∈  dom  𝑀 ) | 
						
							| 46 | 13 14 15 45 5 | meassle | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  ( 𝑀 ‘ ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 47 | 7 | a1i | ⊢ ( 𝜑  →  𝑆  =  ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 48 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  V ) | 
						
							| 49 | 47 48 | fvmpt2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑆 ‘ 𝑛 )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 50 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 51 | 50 | cbvmptv | ⊢ ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑚  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 52 | 7 51 | eqtri | ⊢ 𝑆  =  ( 𝑚  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) | 
						
							| 53 |  | 2fveq3 | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 54 |  | fvexd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ ( 𝑛  +  1 ) ) )  ∈  V ) | 
						
							| 55 | 52 53 43 54 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑆 ‘ ( 𝑛  +  1 ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 56 | 49 55 | breq12d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑆 ‘ 𝑛 )  ≤  ( 𝑆 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  ( 𝑀 ‘ ( 𝐸 ‘ ( 𝑛  +  1 ) ) ) ) ) | 
						
							| 57 | 46 56 | mpbird | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑆 ‘ 𝑛 )  ≤  ( 𝑆 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 58 | 49 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  =  ( 𝑆 ‘ 𝑛 ) ) | 
						
							| 59 | 58 | breq1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ( 𝑆 ‘ 𝑛 )  ≤  𝑥 ) ) | 
						
							| 60 | 59 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ∀ 𝑛  ∈  𝑍 ( 𝑆 ‘ 𝑛 )  ≤  𝑥 ) ) | 
						
							| 61 | 60 | biimpd | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  →  ∀ 𝑛  ∈  𝑍 ( 𝑆 ‘ 𝑛 )  ≤  𝑥 ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ℝ )  →  ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  →  ∀ 𝑛  ∈  𝑍 ( 𝑆 ‘ 𝑛 )  ≤  𝑥 ) ) | 
						
							| 63 | 62 | reximdva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  →  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑆 ‘ 𝑛 )  ≤  𝑥 ) ) | 
						
							| 64 | 6 63 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑆 ‘ 𝑛 )  ≤  𝑥 ) | 
						
							| 65 | 3 2 41 57 64 | climsup | ⊢ ( 𝜑  →  𝑆  ⇝  sup ( ran  𝑆 ,  ℝ ,   <  ) ) | 
						
							| 66 |  | nfv | ⊢ Ⅎ 𝑛 𝜑 | 
						
							| 67 |  | nfv | ⊢ Ⅎ 𝑥 𝜑 | 
						
							| 68 |  | id | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  𝑍 ) | 
						
							| 69 |  | fvex | ⊢ ( 𝐸 ‘ 𝑛 )  ∈  V | 
						
							| 70 | 69 | difexi | ⊢ ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) )  ∈  V | 
						
							| 71 | 70 | a1i | ⊢ ( 𝑛  ∈  𝑍  →  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) )  ∈  V ) | 
						
							| 72 | 8 | fvmpt2 | ⊢ ( ( 𝑛  ∈  𝑍  ∧  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) )  ∈  V )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 73 | 68 71 72 | syl2anc | ⊢ ( 𝑛  ∈  𝑍  →  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 74 | 73 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  =  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 75 | 1 14 | dmmeasal | ⊢ ( 𝜑  →  dom  𝑀  ∈  SAlg ) | 
						
							| 76 | 75 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  dom  𝑀  ∈  SAlg ) | 
						
							| 77 |  | fzoct | ⊢ ( 𝑁 ..^ 𝑛 )  ≼  ω | 
						
							| 78 | 77 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑁 ..^ 𝑛 )  ≼  ω ) | 
						
							| 79 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) )  →  𝐸 : 𝑍 ⟶ dom  𝑀 ) | 
						
							| 80 |  | fzossuz | ⊢ ( 𝑁 ..^ 𝑛 )  ⊆  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 81 | 3 | eqcomi | ⊢ ( ℤ≥ ‘ 𝑁 )  =  𝑍 | 
						
							| 82 | 80 81 | sseqtri | ⊢ ( 𝑁 ..^ 𝑛 )  ⊆  𝑍 | 
						
							| 83 | 82 | sseli | ⊢ ( 𝑖  ∈  ( 𝑁 ..^ 𝑛 )  →  𝑖  ∈  𝑍 ) | 
						
							| 84 | 83 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) )  →  𝑖  ∈  𝑍 ) | 
						
							| 85 | 79 84 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) )  →  ( 𝐸 ‘ 𝑖 )  ∈  dom  𝑀 ) | 
						
							| 86 | 85 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) )  →  ( 𝐸 ‘ 𝑖 )  ∈  dom  𝑀 ) | 
						
							| 87 | 76 78 86 | saliuncl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 )  ∈  dom  𝑀 ) | 
						
							| 88 |  | saldifcl2 | ⊢ ( ( dom  𝑀  ∈  SAlg  ∧  ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑀  ∧  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 )  ∈  dom  𝑀 )  →  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) )  ∈  dom  𝑀 ) | 
						
							| 89 | 76 15 87 88 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) )  ∈  dom  𝑀 ) | 
						
							| 90 | 74 89 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  dom  𝑀 ) | 
						
							| 91 | 13 14 90 | meaxrcl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 92 | 13 90 | meage0 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  0  ≤  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 93 |  | difssd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) )  ⊆  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 94 | 74 93 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 95 | 13 14 90 15 94 | meassle | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 96 | 91 16 12 95 36 | xrlelttrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  <  +∞ ) | 
						
							| 97 | 10 12 91 92 96 | elicod | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 98 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  =  ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 99 | 98 | breq1d | ⊢ ( 𝑛  =  𝑖  →  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  ≤  𝑥 ) ) | 
						
							| 100 | 99 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  ↔  ∀ 𝑖  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  ≤  𝑥 ) | 
						
							| 101 | 100 | biimpi | ⊢ ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  →  ∀ 𝑖  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  ≤  𝑥 ) | 
						
							| 102 | 101 | adantl | ⊢ ( ( 𝜑  ∧  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ∀ 𝑖  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  ≤  𝑥 ) | 
						
							| 103 |  | eleq1w | ⊢ ( 𝑛  =  𝑖  →  ( 𝑛  ∈  𝑍  ↔  𝑖  ∈  𝑍 ) ) | 
						
							| 104 | 103 | anbi2d | ⊢ ( 𝑛  =  𝑖  →  ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑖  ∈  𝑍 ) ) ) | 
						
							| 105 |  | oveq2 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑁 ... 𝑛 )  =  ( 𝑁 ... 𝑖 ) ) | 
						
							| 106 | 105 | sumeq1d | ⊢ ( 𝑛  =  𝑖  →  Σ 𝑚  ∈  ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) )  =  Σ 𝑚  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 107 | 98 106 | eqeq12d | ⊢ ( 𝑛  =  𝑖  →  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  =  Σ 𝑚  ∈  ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) )  ↔  ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  =  Σ 𝑚  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 108 | 104 107 | imbi12d | ⊢ ( 𝑛  =  𝑖  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  =  Σ 𝑚  ∈  ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) )  ↔  ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  =  Σ 𝑚  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) ) | 
						
							| 109 |  | eleq1w | ⊢ ( 𝑚  =  𝑛  →  ( 𝑚  ∈  𝑍  ↔  𝑛  ∈  𝑍 ) ) | 
						
							| 110 | 109 | anbi2d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  ↔  ( 𝜑  ∧  𝑛  ∈  𝑍 ) ) ) | 
						
							| 111 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑁 ... 𝑚 )  =  ( 𝑁 ... 𝑛 ) ) | 
						
							| 112 | 111 | iuneq1d | ⊢ ( 𝑚  =  𝑛  →  ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 113 | 111 | iuneq1d | ⊢ ( 𝑚  =  𝑛  →  ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 114 | 112 113 | eqeq12d | ⊢ ( 𝑚  =  𝑛  →  ( ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 )  ↔  ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 115 | 110 114 | imbi12d | ⊢ ( 𝑚  =  𝑛  →  ( ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 ) )  ↔  ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 116 |  | fveq2 | ⊢ ( 𝑖  =  𝑛  →  ( 𝐹 ‘ 𝑖 )  =  ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 117 | 116 | cbviunv | ⊢ ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 )  =  ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) | 
						
							| 118 | 117 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 )  =  ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 119 | 66 3 4 8 | iundjiun | ⊢ ( 𝜑  →  ( ( ∀ 𝑚  ∈  𝑍 ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 )  =  ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 )  ∧  ∪  𝑛  ∈  𝑍 ( 𝐹 ‘ 𝑛 )  =  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ∧  Disj  𝑛  ∈  𝑍 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 120 | 119 | simplld | ⊢ ( 𝜑  →  ∀ 𝑚  ∈  𝑍 ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 )  =  ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 121 | 120 | adantr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ∀ 𝑚  ∈  𝑍 ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 )  =  ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 122 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  𝑚  ∈  𝑍 ) | 
						
							| 123 |  | rspa | ⊢ ( ( ∀ 𝑚  ∈  𝑍 ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 )  =  ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 )  ∧  𝑚  ∈  𝑍 )  →  ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 )  =  ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 124 | 121 122 123 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 )  =  ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 125 |  | fveq2 | ⊢ ( 𝑛  =  𝑖  →  ( 𝐸 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 126 | 125 | cbviunv | ⊢ ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 )  =  ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 ) | 
						
							| 127 | 126 | a1i | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ∪  𝑛  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 )  =  ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 128 | 118 124 127 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝑍 )  →  ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 129 | 115 128 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 130 | 68 3 | eleqtrdi | ⊢ ( 𝑛  ∈  𝑍  →  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 131 | 130 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 132 |  | fvoveq1 | ⊢ ( 𝑛  =  𝑖  →  ( 𝐸 ‘ ( 𝑛  +  1 ) )  =  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 133 | 125 132 | sseq12d | ⊢ ( 𝑛  =  𝑖  →  ( ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ ( 𝑛  +  1 ) )  ↔  ( 𝐸 ‘ 𝑖 )  ⊆  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 134 | 104 133 | imbi12d | ⊢ ( 𝑛  =  𝑖  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ( 𝐸 ‘ ( 𝑛  +  1 ) ) )  ↔  ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑖 )  ⊆  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 135 | 134 5 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑖 )  ⊆  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 136 | 84 135 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) )  →  ( 𝐸 ‘ 𝑖 )  ⊆  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 137 | 136 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑖  ∈  ( 𝑁 ..^ 𝑛 ) )  →  ( 𝐸 ‘ 𝑖 )  ⊆  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 138 | 131 137 | iunincfi | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐸 ‘ 𝑖 )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 139 | 129 138 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  =  ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 140 | 139 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  =  ( 𝑀 ‘ ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 141 |  | nfv | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  𝑛  ∈  𝑍 ) | 
						
							| 142 |  | elfzuz | ⊢ ( 𝑖  ∈  ( 𝑁 ... 𝑛 )  →  𝑖  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 143 | 142 81 | eleqtrdi | ⊢ ( 𝑖  ∈  ( 𝑁 ... 𝑛 )  →  𝑖  ∈  𝑍 ) | 
						
							| 144 | 143 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑁 ... 𝑛 ) )  →  𝑖  ∈  𝑍 ) | 
						
							| 145 |  | fveq2 | ⊢ ( 𝑛  =  𝑖  →  ( 𝐹 ‘ 𝑛 )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 146 | 145 | eleq1d | ⊢ ( 𝑛  =  𝑖  →  ( ( 𝐹 ‘ 𝑛 )  ∈  dom  𝑀  ↔  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝑀 ) ) | 
						
							| 147 | 104 146 | imbi12d | ⊢ ( 𝑛  =  𝑖  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑛 )  ∈  dom  𝑀 )  ↔  ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝑀 ) ) ) | 
						
							| 148 | 147 90 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝑀 ) | 
						
							| 149 | 144 148 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑁 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝑀 ) | 
						
							| 150 | 149 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑖  ∈  ( 𝑁 ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝑀 ) | 
						
							| 151 |  | fzct | ⊢ ( 𝑁 ... 𝑛 )  ≼  ω | 
						
							| 152 | 151 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑁 ... 𝑛 )  ≼  ω ) | 
						
							| 153 | 144 | ssd | ⊢ ( 𝜑  →  ( 𝑁 ... 𝑛 )  ⊆  𝑍 ) | 
						
							| 154 | 119 | simprd | ⊢ ( 𝜑  →  Disj  𝑛  ∈  𝑍 ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 155 | 145 | cbvdisjv | ⊢ ( Disj  𝑛  ∈  𝑍 ( 𝐹 ‘ 𝑛 )  ↔  Disj  𝑖  ∈  𝑍 ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 156 | 154 155 | sylib | ⊢ ( 𝜑  →  Disj  𝑖  ∈  𝑍 ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 157 |  | disjss1 | ⊢ ( ( 𝑁 ... 𝑛 )  ⊆  𝑍  →  ( Disj  𝑖  ∈  𝑍 ( 𝐹 ‘ 𝑖 )  →  Disj  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 158 | 153 156 157 | sylc | ⊢ ( 𝜑  →  Disj  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 159 | 158 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  Disj  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 160 | 141 13 14 150 152 159 | meadjiun | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ∪  𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑖  ∈  ( 𝑁 ... 𝑛 )  ↦  ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) | 
						
							| 161 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑁 ... 𝑛 )  ∈  Fin ) | 
						
							| 162 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑖  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 163 | 162 | eleq1d | ⊢ ( 𝑛  =  𝑖  →  ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ( 0 [,) +∞ )  ↔  ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ( 0 [,) +∞ ) ) ) | 
						
							| 164 | 104 163 | imbi12d | ⊢ ( 𝑛  =  𝑖  →  ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ∈  ( 0 [,) +∞ ) )  ↔  ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 165 | 164 97 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 166 | 144 165 | syldan | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑁 ... 𝑛 ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 167 | 166 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  ∧  𝑖  ∈  ( 𝑁 ... 𝑛 ) )  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 168 | 161 167 | sge0fsummpt | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( Σ^ ‘ ( 𝑖  ∈  ( 𝑁 ... 𝑛 )  ↦  ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  =  Σ 𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ) | 
						
							| 169 |  | 2fveq3 | ⊢ ( 𝑖  =  𝑚  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 170 | 169 | cbvsumv | ⊢ Σ 𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) )  =  Σ 𝑚  ∈  ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 171 | 170 | a1i | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  Σ 𝑖  ∈  ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) )  =  Σ 𝑚  ∈  ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 172 | 168 171 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( Σ^ ‘ ( 𝑖  ∈  ( 𝑁 ... 𝑛 )  ↦  ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ) )  =  Σ 𝑚  ∈  ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 173 | 140 160 172 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  =  Σ 𝑚  ∈  ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 174 | 108 173 | chvarvv | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  =  Σ 𝑚  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 175 |  | 2fveq3 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) )  =  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 176 | 175 | cbvsumv | ⊢ Σ 𝑚  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) )  =  Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) | 
						
							| 177 | 176 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  Σ 𝑚  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) )  =  Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 178 | 174 177 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  =  Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 179 | 178 | breq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  ≤  𝑥  ↔  Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 180 | 179 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  ≤  𝑥  ↔  ∀ 𝑖  ∈  𝑍 Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 181 | 180 | biimpd | ⊢ ( 𝜑  →  ( ∀ 𝑖  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  ≤  𝑥  →  ∀ 𝑖  ∈  𝑍 Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 182 | 181 | imp | ⊢ ( ( 𝜑  ∧  ∀ 𝑖  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) )  ≤  𝑥 )  →  ∀ 𝑖  ∈  𝑍 Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 183 | 102 182 | syldan | ⊢ ( ( 𝜑  ∧  ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥 )  →  ∀ 𝑖  ∈  𝑍 Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 184 | 183 | ex | ⊢ ( 𝜑  →  ( ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  →  ∀ 𝑖  ∈  𝑍 Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 185 | 184 | reximdv | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  ℝ ∀ 𝑛  ∈  𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) )  ≤  𝑥  →  ∃ 𝑥  ∈  ℝ ∀ 𝑖  ∈  𝑍 Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥 ) ) | 
						
							| 186 | 6 185 | mpd | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℝ ∀ 𝑖  ∈  𝑍 Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) )  ≤  𝑥 ) | 
						
							| 187 | 66 67 2 3 97 186 | sge0reuzb | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) )  =  sup ( ran  ( 𝑖  ∈  𝑍  ↦  Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 188 | 98 | cbvmptv | ⊢ ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑖  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 189 | 7 188 | eqtri | ⊢ 𝑆  =  ( 𝑖  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 190 | 189 | a1i | ⊢ ( 𝜑  →  𝑆  =  ( 𝑖  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ) ) | 
						
							| 191 | 178 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑖  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) )  =  ( 𝑖  ∈  𝑍  ↦  Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 192 | 190 191 | eqtrd | ⊢ ( 𝜑  →  𝑆  =  ( 𝑖  ∈  𝑍  ↦  Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 193 | 192 | rneqd | ⊢ ( 𝜑  →  ran  𝑆  =  ran  ( 𝑖  ∈  𝑍  ↦  Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | 
						
							| 194 | 193 | supeq1d | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ ,   <  )  =  sup ( ran  ( 𝑖  ∈  𝑍  ↦  Σ 𝑛  ∈  ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ,  ℝ ,   <  ) ) | 
						
							| 195 | 187 194 | eqtr4d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) )  =  sup ( ran  𝑆 ,  ℝ ,   <  ) ) | 
						
							| 196 | 195 | eqcomd | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ ,   <  )  =  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 197 | 3 | uzct | ⊢ 𝑍  ≼  ω | 
						
							| 198 | 197 | a1i | ⊢ ( 𝜑  →  𝑍  ≼  ω ) | 
						
							| 199 | 66 1 14 90 198 154 | meadjiun | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐹 ‘ 𝑛 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) | 
						
							| 200 | 199 | eqcomd | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  𝑍  ↦  ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) )  =  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 201 | 119 | simplrd | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐹 ‘ 𝑛 )  =  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 202 | 201 | fveq2d | ⊢ ( 𝜑  →  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐹 ‘ 𝑛 ) )  =  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 203 | 196 200 202 | 3eqtrd | ⊢ ( 𝜑  →  sup ( ran  𝑆 ,  ℝ ,   <  )  =  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 204 | 65 203 | breqtrd | ⊢ ( 𝜑  →  𝑆  ⇝  ( 𝑀 ‘ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |