| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meaiuninclem.m |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
| 2 |
|
meaiuninclem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 3 |
|
meaiuninclem.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
| 4 |
|
meaiuninclem.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ dom 𝑀 ) |
| 5 |
|
meaiuninclem.i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) |
| 6 |
|
meaiuninclem.b |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 7 |
|
meaiuninclem.s |
⊢ 𝑆 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 8 |
|
meaiuninclem.f |
⊢ 𝐹 = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 9 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 10 |
9
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 0 ∈ ℝ* ) |
| 11 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → +∞ ∈ ℝ* ) |
| 13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑀 ∈ Meas ) |
| 14 |
|
eqid |
⊢ dom 𝑀 = dom 𝑀 |
| 15 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑀 ) |
| 16 |
13 14 15
|
meaxrcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 17 |
13 15
|
meage0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 0 ≤ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 18 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 19 |
|
simp1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ) |
| 20 |
|
simp2 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → 𝑥 ∈ ℝ ) |
| 21 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 22 |
19
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → 𝑛 ∈ 𝑍 ) |
| 23 |
|
rspa |
⊢ ( ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 24 |
21 22 23
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 25 |
16
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 26 |
|
rexr |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ* ) |
| 27 |
26
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → 𝑥 ∈ ℝ* ) |
| 28 |
11
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → +∞ ∈ ℝ* ) |
| 29 |
|
simp3 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 30 |
|
ltpnf |
⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) |
| 31 |
30
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → 𝑥 < +∞ ) |
| 32 |
25 27 28 29 31
|
xrlelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) < +∞ ) |
| 33 |
19 20 24 32
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ ℝ ∧ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) < +∞ ) |
| 34 |
33
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ ℝ → ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) < +∞ ) ) ) |
| 35 |
34
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) < +∞ ) ) |
| 36 |
18 35
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) < +∞ ) |
| 37 |
10 12 16 17 36
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,) +∞ ) ) |
| 38 |
37 7
|
fmptd |
⊢ ( 𝜑 → 𝑆 : 𝑍 ⟶ ( 0 [,) +∞ ) ) |
| 39 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ( 0 [,) +∞ ) ⊆ ℝ ) |
| 41 |
38 40
|
fssd |
⊢ ( 𝜑 → 𝑆 : 𝑍 ⟶ ℝ ) |
| 42 |
3
|
peano2uzs |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
| 44 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( 𝐸 ‘ ( 𝑛 + 1 ) ) ∈ dom 𝑀 ) |
| 45 |
43 44
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ ( 𝑛 + 1 ) ) ∈ dom 𝑀 ) |
| 46 |
13 14 15 45 5
|
meassle |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ ( 𝑀 ‘ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ) |
| 47 |
7
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
| 48 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ V ) |
| 49 |
47 48
|
fvmpt2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑆 ‘ 𝑛 ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 50 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑚 → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) |
| 51 |
50
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑚 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) |
| 52 |
7 51
|
eqtri |
⊢ 𝑆 = ( 𝑚 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) ) |
| 53 |
|
2fveq3 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑚 ) ) = ( 𝑀 ‘ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ) |
| 54 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ∈ V ) |
| 55 |
52 53 43 54
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑆 ‘ ( 𝑛 + 1 ) ) = ( 𝑀 ‘ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ) |
| 56 |
49 55
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑆 ‘ 𝑛 ) ≤ ( 𝑆 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ ( 𝑀 ‘ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 57 |
46 56
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑆 ‘ 𝑛 ) ≤ ( 𝑆 ‘ ( 𝑛 + 1 ) ) ) |
| 58 |
49
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑆 ‘ 𝑛 ) ) |
| 59 |
58
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ( 𝑆 ‘ 𝑛 ) ≤ 𝑥 ) ) |
| 60 |
59
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑛 ∈ 𝑍 ( 𝑆 ‘ 𝑛 ) ≤ 𝑥 ) ) |
| 61 |
60
|
biimpd |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 → ∀ 𝑛 ∈ 𝑍 ( 𝑆 ‘ 𝑛 ) ≤ 𝑥 ) ) |
| 62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 → ∀ 𝑛 ∈ 𝑍 ( 𝑆 ‘ 𝑛 ) ≤ 𝑥 ) ) |
| 63 |
62
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑆 ‘ 𝑛 ) ≤ 𝑥 ) ) |
| 64 |
6 63
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑆 ‘ 𝑛 ) ≤ 𝑥 ) |
| 65 |
3 2 41 57 64
|
climsup |
⊢ ( 𝜑 → 𝑆 ⇝ sup ( ran 𝑆 , ℝ , < ) ) |
| 66 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 67 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
| 68 |
|
id |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ 𝑍 ) |
| 69 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑛 ) ∈ V |
| 70 |
69
|
difexi |
⊢ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ∈ V |
| 71 |
70
|
a1i |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) |
| 72 |
8
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ 𝑍 ∧ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ∈ V ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 73 |
68 71 72
|
syl2anc |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 74 |
73
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) = ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 75 |
1 14
|
dmmeasal |
⊢ ( 𝜑 → dom 𝑀 ∈ SAlg ) |
| 76 |
75
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → dom 𝑀 ∈ SAlg ) |
| 77 |
|
fzoct |
⊢ ( 𝑁 ..^ 𝑛 ) ≼ ω |
| 78 |
77
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑁 ..^ 𝑛 ) ≼ ω ) |
| 79 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝐸 : 𝑍 ⟶ dom 𝑀 ) |
| 80 |
|
fzossuz |
⊢ ( 𝑁 ..^ 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑁 ) |
| 81 |
3
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑁 ) = 𝑍 |
| 82 |
80 81
|
sseqtri |
⊢ ( 𝑁 ..^ 𝑛 ) ⊆ 𝑍 |
| 83 |
82
|
sseli |
⊢ ( 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) → 𝑖 ∈ 𝑍 ) |
| 84 |
83
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → 𝑖 ∈ 𝑍 ) |
| 85 |
79 84
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ dom 𝑀 ) |
| 86 |
85
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝐸 ‘ 𝑖 ) ∈ dom 𝑀 ) |
| 87 |
76 78 86
|
saliuncl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ∈ dom 𝑀 ) |
| 88 |
|
saldifcl2 |
⊢ ( ( dom 𝑀 ∈ SAlg ∧ ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑀 ∧ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ∈ dom 𝑀 ) → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ∈ dom 𝑀 ) |
| 89 |
76 15 87 88
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ∈ dom 𝑀 ) |
| 90 |
74 89
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ dom 𝑀 ) |
| 91 |
13 14 90
|
meaxrcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 92 |
13 90
|
meage0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 0 ≤ ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 93 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ⊆ ( 𝐸 ‘ 𝑛 ) ) |
| 94 |
74 93
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ 𝑛 ) ) |
| 95 |
13 14 90 15 94
|
meassle |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
| 96 |
91 16 12 95 36
|
xrlelttrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) < +∞ ) |
| 97 |
10 12 91 92 96
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ( 0 [,) +∞ ) ) |
| 98 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑖 → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ) |
| 99 |
98
|
breq1d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ≤ 𝑥 ) ) |
| 100 |
99
|
cbvralvw |
⊢ ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ↔ ∀ 𝑖 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ≤ 𝑥 ) |
| 101 |
100
|
biimpi |
⊢ ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 → ∀ 𝑖 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ≤ 𝑥 ) |
| 102 |
101
|
adantl |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ∀ 𝑖 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ≤ 𝑥 ) |
| 103 |
|
eleq1w |
⊢ ( 𝑛 = 𝑖 → ( 𝑛 ∈ 𝑍 ↔ 𝑖 ∈ 𝑍 ) ) |
| 104 |
103
|
anbi2d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ) ) |
| 105 |
|
oveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝑁 ... 𝑛 ) = ( 𝑁 ... 𝑖 ) ) |
| 106 |
105
|
sumeq1d |
⊢ ( 𝑛 = 𝑖 → Σ 𝑚 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) = Σ 𝑚 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 107 |
98 106
|
eqeq12d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = Σ 𝑚 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ↔ ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) = Σ 𝑚 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) |
| 108 |
104 107
|
imbi12d |
⊢ ( 𝑛 = 𝑖 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = Σ 𝑚 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) = Σ 𝑚 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) ) |
| 109 |
|
eleq1w |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ 𝑍 ↔ 𝑛 ∈ 𝑍 ) ) |
| 110 |
109
|
anbi2d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ) ) |
| 111 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑁 ... 𝑚 ) = ( 𝑁 ... 𝑛 ) ) |
| 112 |
111
|
iuneq1d |
⊢ ( 𝑚 = 𝑛 → ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) |
| 113 |
111
|
iuneq1d |
⊢ ( 𝑚 = 𝑛 → ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) |
| 114 |
112 113
|
eqeq12d |
⊢ ( 𝑚 = 𝑛 → ( ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 ) ↔ ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 115 |
110 114
|
imbi12d |
⊢ ( 𝑚 = 𝑛 → ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) ↔ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 116 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝐹 ‘ 𝑖 ) = ( 𝐹 ‘ 𝑛 ) ) |
| 117 |
116
|
cbviunv |
⊢ ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) |
| 118 |
117
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) ) |
| 119 |
66 3 4 8
|
iundjiun |
⊢ ( 𝜑 → ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ∧ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ∧ Disj 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) ) |
| 120 |
119
|
simplld |
⊢ ( 𝜑 → ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) |
| 121 |
120
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) |
| 122 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → 𝑚 ∈ 𝑍 ) |
| 123 |
|
rspa |
⊢ ( ( ∀ 𝑚 ∈ 𝑍 ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ∧ 𝑚 ∈ 𝑍 ) → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) |
| 124 |
121 122 123
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) ) |
| 125 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑖 ) ) |
| 126 |
125
|
cbviunv |
⊢ ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) = ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 ) |
| 127 |
126
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ∪ 𝑛 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑛 ) = ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) |
| 128 |
118 124 127
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐹 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑁 ... 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) |
| 129 |
115 128
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) |
| 130 |
68 3
|
eleqtrdi |
⊢ ( 𝑛 ∈ 𝑍 → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 131 |
130
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 132 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑖 → ( 𝐸 ‘ ( 𝑛 + 1 ) ) = ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) |
| 133 |
125 132
|
sseq12d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐸 ‘ 𝑖 ) ⊆ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) |
| 134 |
104 133
|
imbi12d |
⊢ ( 𝑛 = 𝑖 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ( 𝐸 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑖 ) ⊆ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) |
| 135 |
134 5
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑖 ) ⊆ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) |
| 136 |
84 135
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝐸 ‘ 𝑖 ) ⊆ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) |
| 137 |
136
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑖 ∈ ( 𝑁 ..^ 𝑛 ) ) → ( 𝐸 ‘ 𝑖 ) ⊆ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) |
| 138 |
131 137
|
iunincfi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑛 ) ) |
| 139 |
129 138
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) = ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) |
| 140 |
139
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑀 ‘ ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) ) |
| 141 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) |
| 142 |
|
elfzuz |
⊢ ( 𝑖 ∈ ( 𝑁 ... 𝑛 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 143 |
142 81
|
eleqtrdi |
⊢ ( 𝑖 ∈ ( 𝑁 ... 𝑛 ) → 𝑖 ∈ 𝑍 ) |
| 144 |
143
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ) → 𝑖 ∈ 𝑍 ) |
| 145 |
|
fveq2 |
⊢ ( 𝑛 = 𝑖 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 146 |
145
|
eleq1d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝐹 ‘ 𝑛 ) ∈ dom 𝑀 ↔ ( 𝐹 ‘ 𝑖 ) ∈ dom 𝑀 ) ) |
| 147 |
104 146
|
imbi12d |
⊢ ( 𝑛 = 𝑖 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ dom 𝑀 ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝑀 ) ) ) |
| 148 |
147 90
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝑀 ) |
| 149 |
144 148
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝑀 ) |
| 150 |
149
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝑀 ) |
| 151 |
|
fzct |
⊢ ( 𝑁 ... 𝑛 ) ≼ ω |
| 152 |
151
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑁 ... 𝑛 ) ≼ ω ) |
| 153 |
144
|
ssd |
⊢ ( 𝜑 → ( 𝑁 ... 𝑛 ) ⊆ 𝑍 ) |
| 154 |
119
|
simprd |
⊢ ( 𝜑 → Disj 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) |
| 155 |
145
|
cbvdisjv |
⊢ ( Disj 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ↔ Disj 𝑖 ∈ 𝑍 ( 𝐹 ‘ 𝑖 ) ) |
| 156 |
154 155
|
sylib |
⊢ ( 𝜑 → Disj 𝑖 ∈ 𝑍 ( 𝐹 ‘ 𝑖 ) ) |
| 157 |
|
disjss1 |
⊢ ( ( 𝑁 ... 𝑛 ) ⊆ 𝑍 → ( Disj 𝑖 ∈ 𝑍 ( 𝐹 ‘ 𝑖 ) → Disj 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) ) |
| 158 |
153 156 157
|
sylc |
⊢ ( 𝜑 → Disj 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) |
| 159 |
158
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Disj 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) |
| 160 |
141 13 14 150 152 159
|
meadjiun |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ∪ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝐹 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑖 ∈ ( 𝑁 ... 𝑛 ) ↦ ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) ) |
| 161 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑁 ... 𝑛 ) ∈ Fin ) |
| 162 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑖 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 163 |
162
|
eleq1d |
⊢ ( 𝑛 = 𝑖 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ( 0 [,) +∞ ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ( 0 [,) +∞ ) ) ) |
| 164 |
104 163
|
imbi12d |
⊢ ( 𝑛 = 𝑖 → ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ∈ ( 0 [,) +∞ ) ) ↔ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ( 0 [,) +∞ ) ) ) ) |
| 165 |
164 97
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ( 0 [,) +∞ ) ) |
| 166 |
144 165
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ( 0 [,) +∞ ) ) |
| 167 |
166
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ( 0 [,) +∞ ) ) |
| 168 |
161 167
|
sge0fsummpt |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( Σ^ ‘ ( 𝑖 ∈ ( 𝑁 ... 𝑛 ) ↦ ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) = Σ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
| 169 |
|
2fveq3 |
⊢ ( 𝑖 = 𝑚 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 170 |
169
|
cbvsumv |
⊢ Σ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) = Σ 𝑚 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) |
| 171 |
170
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑖 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) = Σ 𝑚 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 172 |
168 171
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( Σ^ ‘ ( 𝑖 ∈ ( 𝑁 ... 𝑛 ) ↦ ( 𝑀 ‘ ( 𝐹 ‘ 𝑖 ) ) ) ) = Σ 𝑚 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 173 |
140 160 172
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) = Σ 𝑚 ∈ ( 𝑁 ... 𝑛 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 174 |
108 173
|
chvarvv |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) = Σ 𝑚 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) ) |
| 175 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑛 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 176 |
175
|
cbvsumv |
⊢ Σ 𝑚 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) = Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) |
| 177 |
176
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → Σ 𝑚 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑚 ) ) = Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 178 |
174 177
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) = Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 179 |
178
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ≤ 𝑥 ↔ Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 180 |
179
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ≤ 𝑥 ↔ ∀ 𝑖 ∈ 𝑍 Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 181 |
180
|
biimpd |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ≤ 𝑥 → ∀ 𝑖 ∈ 𝑍 Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 182 |
181
|
imp |
⊢ ( ( 𝜑 ∧ ∀ 𝑖 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ≤ 𝑥 ) → ∀ 𝑖 ∈ 𝑍 Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 183 |
102 182
|
syldan |
⊢ ( ( 𝜑 ∧ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 ) → ∀ 𝑖 ∈ 𝑍 Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 184 |
183
|
ex |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 → ∀ 𝑖 ∈ 𝑍 Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 185 |
184
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑛 ∈ 𝑍 ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ) ) |
| 186 |
6 185
|
mpd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖 ∈ 𝑍 Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ≤ 𝑥 ) |
| 187 |
66 67 2 3 97 186
|
sge0reuzb |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) = sup ( ran ( 𝑖 ∈ 𝑍 ↦ Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ , < ) ) |
| 188 |
98
|
cbvmptv |
⊢ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑖 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ) |
| 189 |
7 188
|
eqtri |
⊢ 𝑆 = ( 𝑖 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ) |
| 190 |
189
|
a1i |
⊢ ( 𝜑 → 𝑆 = ( 𝑖 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ) ) |
| 191 |
178
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑖 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐸 ‘ 𝑖 ) ) ) = ( 𝑖 ∈ 𝑍 ↦ Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 192 |
190 191
|
eqtrd |
⊢ ( 𝜑 → 𝑆 = ( 𝑖 ∈ 𝑍 ↦ Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 193 |
192
|
rneqd |
⊢ ( 𝜑 → ran 𝑆 = ran ( 𝑖 ∈ 𝑍 ↦ Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 194 |
193
|
supeq1d |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ , < ) = sup ( ran ( 𝑖 ∈ 𝑍 ↦ Σ 𝑛 ∈ ( 𝑁 ... 𝑖 ) ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) , ℝ , < ) ) |
| 195 |
187 194
|
eqtr4d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) = sup ( ran 𝑆 , ℝ , < ) ) |
| 196 |
195
|
eqcomd |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ , < ) = ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 197 |
3
|
uzct |
⊢ 𝑍 ≼ ω |
| 198 |
197
|
a1i |
⊢ ( 𝜑 → 𝑍 ≼ ω ) |
| 199 |
66 1 14 90 198 154
|
meadjiun |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) ) |
| 200 |
199
|
eqcomd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ 𝑍 ↦ ( 𝑀 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) = ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) ) |
| 201 |
119
|
simplrd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
| 202 |
201
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐹 ‘ 𝑛 ) ) = ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
| 203 |
196 200 202
|
3eqtrd |
⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ , < ) = ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |
| 204 |
65 203
|
breqtrd |
⊢ ( 𝜑 → 𝑆 ⇝ ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) |