Description: If the measure of a measurable set is greater than or equal to 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | meage0.m | ⊢ ( 𝜑 → 𝑀 ∈ Meas ) | |
meage0.a | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑀 ) | ||
Assertion | meage0 | ⊢ ( 𝜑 → 0 ≤ ( 𝑀 ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meage0.m | ⊢ ( 𝜑 → 𝑀 ∈ Meas ) | |
2 | meage0.a | ⊢ ( 𝜑 → 𝐴 ∈ dom 𝑀 ) | |
3 | 0xr | ⊢ 0 ∈ ℝ* | |
4 | 3 | a1i | ⊢ ( 𝜑 → 0 ∈ ℝ* ) |
5 | pnfxr | ⊢ +∞ ∈ ℝ* | |
6 | 5 | a1i | ⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
7 | eqid | ⊢ dom 𝑀 = dom 𝑀 | |
8 | 1 7 2 | meacl | ⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
9 | iccgelb | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝑀 ‘ 𝐴 ) ) | |
10 | 4 6 8 9 | syl3anc | ⊢ ( 𝜑 → 0 ≤ ( 𝑀 ‘ 𝐴 ) ) |