| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meadif.m | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 2 |  | meadif.a | ⊢ ( 𝜑  →  𝐴  ∈  dom  𝑀 ) | 
						
							| 3 |  | meadif.r | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 4 |  | meadif.b | ⊢ ( 𝜑  →  𝐵  ∈  dom  𝑀 ) | 
						
							| 5 |  | meadif.s | ⊢ ( 𝜑  →  𝐵  ⊆  𝐴 ) | 
						
							| 6 |  | undif | ⊢ ( 𝐵  ⊆  𝐴  ↔  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  =  𝐴 ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( 𝜑  →  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) )  =  𝐴 ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  =  ( 𝑀 ‘ ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) ) ) | 
						
							| 10 |  | eqid | ⊢ dom  𝑀  =  dom  𝑀 | 
						
							| 11 | 1 10 | dmmeasal | ⊢ ( 𝜑  →  dom  𝑀  ∈  SAlg ) | 
						
							| 12 |  | saldifcl2 | ⊢ ( ( dom  𝑀  ∈  SAlg  ∧  𝐴  ∈  dom  𝑀  ∧  𝐵  ∈  dom  𝑀 )  →  ( 𝐴  ∖  𝐵 )  ∈  dom  𝑀 ) | 
						
							| 13 | 11 2 4 12 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝐵 )  ∈  dom  𝑀 ) | 
						
							| 14 |  | disjdif | ⊢ ( 𝐵  ∩  ( 𝐴  ∖  𝐵 ) )  =  ∅ | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( 𝐵  ∩  ( 𝐴  ∖  𝐵 ) )  =  ∅ ) | 
						
							| 16 | 1 2 3 5 4 | meassre | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ∈  ℝ ) | 
						
							| 17 |  | difssd | ⊢ ( 𝜑  →  ( 𝐴  ∖  𝐵 )  ⊆  𝐴 ) | 
						
							| 18 | 1 2 3 17 13 | meassre | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐴  ∖  𝐵 ) )  ∈  ℝ ) | 
						
							| 19 | 1 10 4 13 15 16 18 | meadjunre | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐵  ∪  ( 𝐴  ∖  𝐵 ) ) )  =  ( ( 𝑀 ‘ 𝐵 )  +  ( 𝑀 ‘ ( 𝐴  ∖  𝐵 ) ) ) ) | 
						
							| 20 | 9 19 | eqtr2d | ⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐵 )  +  ( 𝑀 ‘ ( 𝐴  ∖  𝐵 ) ) )  =  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 21 | 16 | recnd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 22 | 18 | recnd | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐴  ∖  𝐵 ) )  ∈  ℂ ) | 
						
							| 23 | 3 | recnd | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 24 | 21 22 23 | addrsub | ⊢ ( 𝜑  →  ( ( ( 𝑀 ‘ 𝐵 )  +  ( 𝑀 ‘ ( 𝐴  ∖  𝐵 ) ) )  =  ( 𝑀 ‘ 𝐴 )  ↔  ( 𝑀 ‘ ( 𝐴  ∖  𝐵 ) )  =  ( ( 𝑀 ‘ 𝐴 )  −  ( 𝑀 ‘ 𝐵 ) ) ) ) | 
						
							| 25 | 20 24 | mpbid | ⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝐴  ∖  𝐵 ) )  =  ( ( 𝑀 ‘ 𝐴 )  −  ( 𝑀 ‘ 𝐵 ) ) ) |