Step |
Hyp |
Ref |
Expression |
1 |
|
meadif.m |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
2 |
|
meadif.a |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑀 ) |
3 |
|
meadif.r |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ ) |
4 |
|
meadif.b |
⊢ ( 𝜑 → 𝐵 ∈ dom 𝑀 ) |
5 |
|
meadif.s |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
6 |
|
undif |
⊢ ( 𝐵 ⊆ 𝐴 ↔ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
7 |
5 6
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 ) |
8 |
7
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) |
9 |
8
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = ( 𝑀 ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) ) |
10 |
|
eqid |
⊢ dom 𝑀 = dom 𝑀 |
11 |
1 10
|
dmmeasal |
⊢ ( 𝜑 → dom 𝑀 ∈ SAlg ) |
12 |
|
saldifcl2 |
⊢ ( ( dom 𝑀 ∈ SAlg ∧ 𝐴 ∈ dom 𝑀 ∧ 𝐵 ∈ dom 𝑀 ) → ( 𝐴 ∖ 𝐵 ) ∈ dom 𝑀 ) |
13 |
11 2 4 12
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ∈ dom 𝑀 ) |
14 |
|
disjdif |
⊢ ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
15 |
14
|
a1i |
⊢ ( 𝜑 → ( 𝐵 ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) |
16 |
1 2 3 5 4
|
meassre |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ ℝ ) |
17 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) |
18 |
1 2 3 17 13
|
meassre |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
19 |
1 10 4 13 15 16 18
|
meadjunre |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐵 ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( 𝑀 ‘ 𝐵 ) + ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
20 |
9 19
|
eqtr2d |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐵 ) + ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝑀 ‘ 𝐴 ) ) |
21 |
16
|
recnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ ℂ ) |
22 |
18
|
recnd |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℂ ) |
23 |
3
|
recnd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℂ ) |
24 |
21 22 23
|
addrsub |
⊢ ( 𝜑 → ( ( ( 𝑀 ‘ 𝐵 ) + ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝑀 ‘ 𝐴 ) ↔ ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐵 ) ) ) ) |
25 |
20 24
|
mpbid |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝑀 ‘ 𝐴 ) − ( 𝑀 ‘ 𝐵 ) ) ) |