Metamath Proof Explorer
Description: A measure that is less than or equal to 0 is 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)
|
|
Ref |
Expression |
|
Hypotheses |
meale0eq0.m |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
|
|
meale0eq0.a |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑀 ) |
|
|
meale0eq0.l |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≤ 0 ) |
|
Assertion |
meale0eq0 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = 0 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
meale0eq0.m |
⊢ ( 𝜑 → 𝑀 ∈ Meas ) |
2 |
|
meale0eq0.a |
⊢ ( 𝜑 → 𝐴 ∈ dom 𝑀 ) |
3 |
|
meale0eq0.l |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≤ 0 ) |
4 |
|
eqid |
⊢ dom 𝑀 = dom 𝑀 |
5 |
1 4 2
|
meaxrcl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ) |
6 |
|
0xr |
⊢ 0 ∈ ℝ* |
7 |
6
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
8 |
1 2
|
meage0 |
⊢ ( 𝜑 → 0 ≤ ( 𝑀 ‘ 𝐴 ) ) |
9 |
5 7 3 8
|
xrletrid |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = 0 ) |