Metamath Proof Explorer


Theorem meale0eq0

Description: A measure that is less than or equal to 0 is 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meale0eq0.m ( 𝜑𝑀 ∈ Meas )
meale0eq0.a ( 𝜑𝐴 ∈ dom 𝑀 )
meale0eq0.l ( 𝜑 → ( 𝑀𝐴 ) ≤ 0 )
Assertion meale0eq0 ( 𝜑 → ( 𝑀𝐴 ) = 0 )

Proof

Step Hyp Ref Expression
1 meale0eq0.m ( 𝜑𝑀 ∈ Meas )
2 meale0eq0.a ( 𝜑𝐴 ∈ dom 𝑀 )
3 meale0eq0.l ( 𝜑 → ( 𝑀𝐴 ) ≤ 0 )
4 eqid dom 𝑀 = dom 𝑀
5 1 4 2 meaxrcl ( 𝜑 → ( 𝑀𝐴 ) ∈ ℝ* )
6 0xr 0 ∈ ℝ*
7 6 a1i ( 𝜑 → 0 ∈ ℝ* )
8 1 2 meage0 ( 𝜑 → 0 ≤ ( 𝑀𝐴 ) )
9 5 7 3 8 xrletrid ( 𝜑 → ( 𝑀𝐴 ) = 0 )