Metamath Proof Explorer
		
		
		
		Description:  A measure that is less than or equal to 0 is 0 .  (Contributed by Glauco Siliprandi, 8-Apr-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | meale0eq0.m | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
					
						|  |  | meale0eq0.a | ⊢ ( 𝜑  →  𝐴  ∈  dom  𝑀 ) | 
					
						|  |  | meale0eq0.l | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ≤  0 ) | 
				
					|  | Assertion | meale0eq0 | ⊢  ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  =  0 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | meale0eq0.m | ⊢ ( 𝜑  →  𝑀  ∈  Meas ) | 
						
							| 2 |  | meale0eq0.a | ⊢ ( 𝜑  →  𝐴  ∈  dom  𝑀 ) | 
						
							| 3 |  | meale0eq0.l | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ≤  0 ) | 
						
							| 4 |  | eqid | ⊢ dom  𝑀  =  dom  𝑀 | 
						
							| 5 | 1 4 2 | meaxrcl | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  ∈  ℝ* ) | 
						
							| 6 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 7 | 6 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ* ) | 
						
							| 8 | 1 2 | meage0 | ⊢ ( 𝜑  →  0  ≤  ( 𝑀 ‘ 𝐴 ) ) | 
						
							| 9 | 5 7 3 8 | xrletrid | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  =  0 ) |