Description: A measure that is less than or equal to 0 is 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meale0eq0.m | |- ( ph -> M e. Meas ) | |
| meale0eq0.a | |- ( ph -> A e. dom M ) | ||
| meale0eq0.l | |- ( ph -> ( M ` A ) <_ 0 ) | ||
| Assertion | meale0eq0 | |- ( ph -> ( M ` A ) = 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | meale0eq0.m | |- ( ph -> M e. Meas ) | |
| 2 | meale0eq0.a | |- ( ph -> A e. dom M ) | |
| 3 | meale0eq0.l | |- ( ph -> ( M ` A ) <_ 0 ) | |
| 4 | eqid | |- dom M = dom M | |
| 5 | 1 4 2 | meaxrcl | |- ( ph -> ( M ` A ) e. RR* ) | 
| 6 | 0xr | |- 0 e. RR* | |
| 7 | 6 | a1i | |- ( ph -> 0 e. RR* ) | 
| 8 | 1 2 | meage0 | |- ( ph -> 0 <_ ( M ` A ) ) | 
| 9 | 5 7 3 8 | xrletrid | |- ( ph -> ( M ` A ) = 0 ) |