Description: A measure that is less than or equal to 0 is 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | meale0eq0.m | |- ( ph -> M e. Meas ) |
|
meale0eq0.a | |- ( ph -> A e. dom M ) |
||
meale0eq0.l | |- ( ph -> ( M ` A ) <_ 0 ) |
||
Assertion | meale0eq0 | |- ( ph -> ( M ` A ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meale0eq0.m | |- ( ph -> M e. Meas ) |
|
2 | meale0eq0.a | |- ( ph -> A e. dom M ) |
|
3 | meale0eq0.l | |- ( ph -> ( M ` A ) <_ 0 ) |
|
4 | eqid | |- dom M = dom M |
|
5 | 1 4 2 | meaxrcl | |- ( ph -> ( M ` A ) e. RR* ) |
6 | 0xr | |- 0 e. RR* |
|
7 | 6 | a1i | |- ( ph -> 0 e. RR* ) |
8 | 1 2 | meage0 | |- ( ph -> 0 <_ ( M ` A ) ) |
9 | 5 7 3 8 | xrletrid | |- ( ph -> ( M ` A ) = 0 ) |