Metamath Proof Explorer


Theorem meale0eq0

Description: A measure that is less than or equal to 0 is 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meale0eq0.m
|- ( ph -> M e. Meas )
meale0eq0.a
|- ( ph -> A e. dom M )
meale0eq0.l
|- ( ph -> ( M ` A ) <_ 0 )
Assertion meale0eq0
|- ( ph -> ( M ` A ) = 0 )

Proof

Step Hyp Ref Expression
1 meale0eq0.m
 |-  ( ph -> M e. Meas )
2 meale0eq0.a
 |-  ( ph -> A e. dom M )
3 meale0eq0.l
 |-  ( ph -> ( M ` A ) <_ 0 )
4 eqid
 |-  dom M = dom M
5 1 4 2 meaxrcl
 |-  ( ph -> ( M ` A ) e. RR* )
6 0xr
 |-  0 e. RR*
7 6 a1i
 |-  ( ph -> 0 e. RR* )
8 1 2 meage0
 |-  ( ph -> 0 <_ ( M ` A ) )
9 5 7 3 8 xrletrid
 |-  ( ph -> ( M ` A ) = 0 )