Metamath Proof Explorer


Theorem volmea

Description: The Lebeasgue measure on the Reals is actually a measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion volmea φ vol Meas

Proof

Step Hyp Ref Expression
1 dmvolsal dom vol SAlg
2 1 a1i φ dom vol SAlg
3 volf vol : dom vol 0 +∞
4 3 a1i φ vol : dom vol 0 +∞
5 vol0 vol = 0
6 5 a1i φ vol = 0
7 simp1 φ e : dom vol Disj n e n φ
8 simp2 φ e : dom vol Disj n e n e : dom vol
9 fveq2 m = n e m = e n
10 9 cbvdisjv Disj m e m Disj n e n
11 10 biimpri Disj n e n Disj m e m
12 11 3ad2ant3 φ e : dom vol Disj n e n Disj m e m
13 simp2 φ e : dom vol Disj m e m e : dom vol
14 10 biimpi Disj m e m Disj n e n
15 14 3ad2ant3 φ e : dom vol Disj m e m Disj n e n
16 13 15 voliunsge0 φ e : dom vol Disj m e m vol n e n = sum^ n vol e n
17 7 8 12 16 syl3anc φ e : dom vol Disj n e n vol n e n = sum^ n vol e n
18 2 4 6 17 ismeannd φ vol Meas