| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmvolsal |
⊢ dom vol ∈ SAlg |
| 2 |
1
|
a1i |
⊢ ( 𝜑 → dom vol ∈ SAlg ) |
| 3 |
|
volf |
⊢ vol : dom vol ⟶ ( 0 [,] +∞ ) |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → vol : dom vol ⟶ ( 0 [,] +∞ ) ) |
| 5 |
|
vol0 |
⊢ ( vol ‘ ∅ ) = 0 |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( vol ‘ ∅ ) = 0 ) |
| 7 |
|
simp1 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → 𝜑 ) |
| 8 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → 𝑒 : ℕ ⟶ dom vol ) |
| 9 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑒 ‘ 𝑚 ) = ( 𝑒 ‘ 𝑛 ) ) |
| 10 |
9
|
cbvdisjv |
⊢ ( Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ↔ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
| 11 |
10
|
biimpri |
⊢ ( Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) → Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) |
| 12 |
11
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) |
| 13 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) → 𝑒 : ℕ ⟶ dom vol ) |
| 14 |
10
|
biimpi |
⊢ ( Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) → Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) → Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) |
| 16 |
13 15
|
voliunsge0 |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑚 ∈ ℕ ( 𝑒 ‘ 𝑚 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
| 17 |
7 8 12 16
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) → ( vol ‘ ∪ 𝑛 ∈ ℕ ( 𝑒 ‘ 𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) |
| 18 |
2 4 6 17
|
ismeannd |
⊢ ( 𝜑 → vol ∈ Meas ) |