| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dmvolsal | ⊢ dom  vol  ∈  SAlg | 
						
							| 2 | 1 | a1i | ⊢ ( 𝜑  →  dom  vol  ∈  SAlg ) | 
						
							| 3 |  | volf | ⊢ vol : dom  vol ⟶ ( 0 [,] +∞ ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →  vol : dom  vol ⟶ ( 0 [,] +∞ ) ) | 
						
							| 5 |  | vol0 | ⊢ ( vol ‘ ∅ )  =  0 | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  ( vol ‘ ∅ )  =  0 ) | 
						
							| 7 |  | simp1 | ⊢ ( ( 𝜑  ∧  𝑒 : ℕ ⟶ dom  vol  ∧  Disj  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 ) )  →  𝜑 ) | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑒 : ℕ ⟶ dom  vol  ∧  Disj  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 ) )  →  𝑒 : ℕ ⟶ dom  vol ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑒 ‘ 𝑚 )  =  ( 𝑒 ‘ 𝑛 ) ) | 
						
							| 10 | 9 | cbvdisjv | ⊢ ( Disj  𝑚  ∈  ℕ ( 𝑒 ‘ 𝑚 )  ↔  Disj  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 ) ) | 
						
							| 11 | 10 | biimpri | ⊢ ( Disj  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 )  →  Disj  𝑚  ∈  ℕ ( 𝑒 ‘ 𝑚 ) ) | 
						
							| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑒 : ℕ ⟶ dom  vol  ∧  Disj  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 ) )  →  Disj  𝑚  ∈  ℕ ( 𝑒 ‘ 𝑚 ) ) | 
						
							| 13 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑒 : ℕ ⟶ dom  vol  ∧  Disj  𝑚  ∈  ℕ ( 𝑒 ‘ 𝑚 ) )  →  𝑒 : ℕ ⟶ dom  vol ) | 
						
							| 14 | 10 | biimpi | ⊢ ( Disj  𝑚  ∈  ℕ ( 𝑒 ‘ 𝑚 )  →  Disj  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 ) ) | 
						
							| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑒 : ℕ ⟶ dom  vol  ∧  Disj  𝑚  ∈  ℕ ( 𝑒 ‘ 𝑚 ) )  →  Disj  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 ) ) | 
						
							| 16 | 13 15 | voliunsge0 | ⊢ ( ( 𝜑  ∧  𝑒 : ℕ ⟶ dom  vol  ∧  Disj  𝑚  ∈  ℕ ( 𝑒 ‘ 𝑚 ) )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) | 
						
							| 17 | 7 8 12 16 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑒 : ℕ ⟶ dom  vol  ∧  Disj  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 ) )  →  ( vol ‘ ∪  𝑛  ∈  ℕ ( 𝑒 ‘ 𝑛 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ℕ  ↦  ( vol ‘ ( 𝑒 ‘ 𝑛 ) ) ) ) ) | 
						
							| 18 | 2 4 6 17 | ismeannd | ⊢ ( 𝜑  →  vol  ∈  Meas ) |