Metamath Proof Explorer


Theorem volmea

Description: The Lebeasgue measure on the Reals is actually a measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion volmea ( 𝜑 → vol ∈ Meas )

Proof

Step Hyp Ref Expression
1 dmvolsal dom vol ∈ SAlg
2 1 a1i ( 𝜑 → dom vol ∈ SAlg )
3 volf vol : dom vol ⟶ ( 0 [,] +∞ )
4 3 a1i ( 𝜑 → vol : dom vol ⟶ ( 0 [,] +∞ ) )
5 vol0 ( vol ‘ ∅ ) = 0
6 5 a1i ( 𝜑 → ( vol ‘ ∅ ) = 0 )
7 simp1 ( ( 𝜑𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → 𝜑 )
8 simp2 ( ( 𝜑𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → 𝑒 : ℕ ⟶ dom vol )
9 fveq2 ( 𝑚 = 𝑛 → ( 𝑒𝑚 ) = ( 𝑒𝑛 ) )
10 9 cbvdisjv ( Disj 𝑚 ∈ ℕ ( 𝑒𝑚 ) ↔ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) )
11 10 biimpri ( Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) → Disj 𝑚 ∈ ℕ ( 𝑒𝑚 ) )
12 11 3ad2ant3 ( ( 𝜑𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → Disj 𝑚 ∈ ℕ ( 𝑒𝑚 ) )
13 simp2 ( ( 𝜑𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑚 ∈ ℕ ( 𝑒𝑚 ) ) → 𝑒 : ℕ ⟶ dom vol )
14 10 biimpi ( Disj 𝑚 ∈ ℕ ( 𝑒𝑚 ) → Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) )
15 14 3ad2ant3 ( ( 𝜑𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑚 ∈ ℕ ( 𝑒𝑚 ) ) → Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) )
16 13 15 voliunsge0 ( ( 𝜑𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑚 ∈ ℕ ( 𝑒𝑚 ) ) → ( vol ‘ 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑒𝑛 ) ) ) ) )
17 7 8 12 16 syl3anc ( ( 𝜑𝑒 : ℕ ⟶ dom vol ∧ Disj 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) → ( vol ‘ 𝑛 ∈ ℕ ( 𝑒𝑛 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( vol ‘ ( 𝑒𝑛 ) ) ) ) )
18 2 4 6 17 ismeannd ( 𝜑 → vol ∈ Meas )