Metamath Proof Explorer


Theorem vonxrcl

Description: The Lebesgue measure of a set is an extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonxrcl.x
|- ( ph -> X e. Fin )
vonxrcl.s
|- S = dom ( voln ` X )
vonxrcl.a
|- ( ph -> A e. S )
Assertion vonxrcl
|- ( ph -> ( ( voln ` X ) ` A ) e. RR* )

Proof

Step Hyp Ref Expression
1 vonxrcl.x
 |-  ( ph -> X e. Fin )
2 vonxrcl.s
 |-  S = dom ( voln ` X )
3 vonxrcl.a
 |-  ( ph -> A e. S )
4 iccssxr
 |-  ( 0 [,] +oo ) C_ RR*
5 1 2 3 voncl
 |-  ( ph -> ( ( voln ` X ) ` A ) e. ( 0 [,] +oo ) )
6 4 5 sselid
 |-  ( ph -> ( ( voln ` X ) ` A ) e. RR* )