Description: The Lebesgue measure of a set is an extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vonxrcl.x | |- ( ph -> X e. Fin ) |
|
vonxrcl.s | |- S = dom ( voln ` X ) |
||
vonxrcl.a | |- ( ph -> A e. S ) |
||
Assertion | vonxrcl | |- ( ph -> ( ( voln ` X ) ` A ) e. RR* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonxrcl.x | |- ( ph -> X e. Fin ) |
|
2 | vonxrcl.s | |- S = dom ( voln ` X ) |
|
3 | vonxrcl.a | |- ( ph -> A e. S ) |
|
4 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
5 | 1 2 3 | voncl | |- ( ph -> ( ( voln ` X ) ` A ) e. ( 0 [,] +oo ) ) |
6 | 4 5 | sselid | |- ( ph -> ( ( voln ` X ) ` A ) e. RR* ) |