Description: The Lebesgue measure of a set is an extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vonxrcl.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
vonxrcl.s | ⊢ 𝑆 = dom ( voln ‘ 𝑋 ) | ||
vonxrcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
Assertion | vonxrcl | ⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonxrcl.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
2 | vonxrcl.s | ⊢ 𝑆 = dom ( voln ‘ 𝑋 ) | |
3 | vonxrcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
4 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
5 | 1 2 3 | voncl | ⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
6 | 4 5 | sselid | ⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ* ) |