Description: The Lebesgue measure of a set is an extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vonxrcl.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| vonxrcl.s | ⊢ 𝑆 = dom ( voln ‘ 𝑋 ) | ||
| vonxrcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| Assertion | vonxrcl | ⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vonxrcl.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 2 | vonxrcl.s | ⊢ 𝑆 = dom ( voln ‘ 𝑋 ) | |
| 3 | vonxrcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 4 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 5 | 1 2 3 | voncl | ⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 6 | 4 5 | sselid | ⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ* ) |