Metamath Proof Explorer


Theorem vonxrcl

Description: The Lebesgue measure of a set is an extended real. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonxrcl.x ( 𝜑𝑋 ∈ Fin )
vonxrcl.s 𝑆 = dom ( voln ‘ 𝑋 )
vonxrcl.a ( 𝜑𝐴𝑆 )
Assertion vonxrcl ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 vonxrcl.x ( 𝜑𝑋 ∈ Fin )
2 vonxrcl.s 𝑆 = dom ( voln ‘ 𝑋 )
3 vonxrcl.a ( 𝜑𝐴𝑆 )
4 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
5 1 2 3 voncl ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) )
6 4 5 sselid ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ* )