Metamath Proof Explorer


Theorem ioosshoi

Description: A n-dimensional open interval is a subset of the half-open interval with the same bounds. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion ioosshoi X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 [,) 𝐵 )

Proof

Step Hyp Ref Expression
1 nftru 𝑘
2 ioossico ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 )
3 2 a1i ( ( ⊤ ∧ 𝑘𝑋 ) → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,) 𝐵 ) )
4 1 3 ixpssixp ( ⊤ → X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 [,) 𝐵 ) )
5 4 mptru X 𝑘𝑋 ( 𝐴 (,) 𝐵 ) ⊆ X 𝑘𝑋 ( 𝐴 [,) 𝐵 )