Description: Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixpssixp.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| ixpssixp.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) | ||
| Assertion | ixpssixp | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐵 ⊆ X 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixpssixp.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | ixpssixp.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ⊆ 𝐶 ) | |
| 3 | 2 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶 ) ) |
| 4 | 1 3 | ralrimi | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ) |
| 5 | ss2ixp | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X 𝑥 ∈ 𝐴 𝐵 ⊆ X 𝑥 ∈ 𝐴 𝐶 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → X 𝑥 ∈ 𝐴 𝐵 ⊆ X 𝑥 ∈ 𝐴 𝐶 ) |