Description: Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ixpssixp.1 | |- F/ x ph |
|
ixpssixp.2 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
||
Assertion | ixpssixp | |- ( ph -> X_ x e. A B C_ X_ x e. A C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpssixp.1 | |- F/ x ph |
|
2 | ixpssixp.2 | |- ( ( ph /\ x e. A ) -> B C_ C ) |
|
3 | 2 | ex | |- ( ph -> ( x e. A -> B C_ C ) ) |
4 | 1 3 | ralrimi | |- ( ph -> A. x e. A B C_ C ) |
5 | ss2ixp | |- ( A. x e. A B C_ C -> X_ x e. A B C_ X_ x e. A C ) |
|
6 | 4 5 | syl | |- ( ph -> X_ x e. A B C_ X_ x e. A C ) |