Metamath Proof Explorer


Theorem ixpssixp

Description: Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses ixpssixp.1
|- F/ x ph
ixpssixp.2
|- ( ( ph /\ x e. A ) -> B C_ C )
Assertion ixpssixp
|- ( ph -> X_ x e. A B C_ X_ x e. A C )

Proof

Step Hyp Ref Expression
1 ixpssixp.1
 |-  F/ x ph
2 ixpssixp.2
 |-  ( ( ph /\ x e. A ) -> B C_ C )
3 2 ex
 |-  ( ph -> ( x e. A -> B C_ C ) )
4 1 3 ralrimi
 |-  ( ph -> A. x e. A B C_ C )
5 ss2ixp
 |-  ( A. x e. A B C_ C -> X_ x e. A B C_ X_ x e. A C )
6 4 5 syl
 |-  ( ph -> X_ x e. A B C_ X_ x e. A C )