| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vonn0hoi.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | vonn0hoi.n | ⊢ ( 𝜑  →  𝑋  ≠  ∅ ) | 
						
							| 3 |  | vonn0hoi.a | ⊢ ( 𝜑  →  𝐴 : 𝑋 ⟶ ℝ ) | 
						
							| 4 |  | vonn0hoi.b | ⊢ ( 𝜑  →  𝐵 : 𝑋 ⟶ ℝ ) | 
						
							| 5 |  | vonn0hoi.i | ⊢ 𝐼  =  X 𝑘  ∈  𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) | 
						
							| 6 |  | eqid | ⊢ ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) )  =  ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | 
						
							| 7 | 1 3 4 5 6 | vonhoi | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ( 𝐴 ( ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) ) | 
						
							| 8 | 6 1 2 3 4 | hoidmvn0val | ⊢ ( 𝜑  →  ( 𝐴 ( ( 𝑥  ∈  Fin  ↦  ( 𝑎  ∈  ( ℝ  ↑m  𝑥 ) ,  𝑏  ∈  ( ℝ  ↑m  𝑥 )  ↦  if ( 𝑥  =  ∅ ,  0 ,  ∏ 𝑘  ∈  𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) | 
						
							| 9 | 7 8 | eqtrd | ⊢ ( 𝜑  →  ( ( voln ‘ 𝑋 ) ‘ 𝐼 )  =  ∏ 𝑘  ∈  𝑋 ( vol ‘ ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ) ) |