Metamath Proof Explorer


Theorem vonn0hoi

Description: The Lebesgue outer measure of a multidimensional half-open interval when the dimension of the space is nonzero. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0hoi.x ( 𝜑𝑋 ∈ Fin )
vonn0hoi.n ( 𝜑𝑋 ≠ ∅ )
vonn0hoi.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
vonn0hoi.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
vonn0hoi.i 𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) )
Assertion vonn0hoi ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) )

Proof

Step Hyp Ref Expression
1 vonn0hoi.x ( 𝜑𝑋 ∈ Fin )
2 vonn0hoi.n ( 𝜑𝑋 ≠ ∅ )
3 vonn0hoi.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
4 vonn0hoi.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
5 vonn0hoi.i 𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) )
6 eqid ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) ) = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) )
7 1 3 4 5 6 vonhoi ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) )
8 6 1 2 3 4 hoidmvn0val ( 𝜑 → ( 𝐴 ( ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) ) ‘ 𝑋 ) 𝐵 ) = ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) )
9 7 8 eqtrd ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ∏ 𝑘𝑋 ( vol ‘ ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ) )