Metamath Proof Explorer


Theorem vonn0hoi

Description: The Lebesgue outer measure of a multidimensional half-open interval when the dimension of the space is nonzero. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0hoi.x
|- ( ph -> X e. Fin )
vonn0hoi.n
|- ( ph -> X =/= (/) )
vonn0hoi.a
|- ( ph -> A : X --> RR )
vonn0hoi.b
|- ( ph -> B : X --> RR )
vonn0hoi.i
|- I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) )
Assertion vonn0hoi
|- ( ph -> ( ( voln ` X ) ` I ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) )

Proof

Step Hyp Ref Expression
1 vonn0hoi.x
 |-  ( ph -> X e. Fin )
2 vonn0hoi.n
 |-  ( ph -> X =/= (/) )
3 vonn0hoi.a
 |-  ( ph -> A : X --> RR )
4 vonn0hoi.b
 |-  ( ph -> B : X --> RR )
5 vonn0hoi.i
 |-  I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) )
6 eqid
 |-  ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) )
7 1 3 4 5 6 vonhoi
 |-  ( ph -> ( ( voln ` X ) ` I ) = ( A ( ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) ` X ) B ) )
8 6 1 2 3 4 hoidmvn0val
 |-  ( ph -> ( A ( ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) ) ` X ) B ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) )
9 7 8 eqtrd
 |-  ( ph -> ( ( voln ` X ) ` I ) = prod_ k e. X ( vol ` ( ( A ` k ) [,) ( B ` k ) ) ) )