Metamath Proof Explorer


Theorem vonhoi

Description: The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). A direct consequence of Proposition 115D (b) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonhoi.x
|- ( ph -> X e. Fin )
vonhoi.a
|- ( ph -> A : X --> RR )
vonhoi.b
|- ( ph -> B : X --> RR )
vonhoi.c
|- I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) )
vonhoi.l
|- L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) )
Assertion vonhoi
|- ( ph -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) )

Proof

Step Hyp Ref Expression
1 vonhoi.x
 |-  ( ph -> X e. Fin )
2 vonhoi.a
 |-  ( ph -> A : X --> RR )
3 vonhoi.b
 |-  ( ph -> B : X --> RR )
4 vonhoi.c
 |-  I = X_ k e. X ( ( A ` k ) [,) ( B ` k ) )
5 vonhoi.l
 |-  L = ( x e. Fin |-> ( a e. ( RR ^m x ) , b e. ( RR ^m x ) |-> if ( x = (/) , 0 , prod_ k e. x ( vol ` ( ( a ` k ) [,) ( b ` k ) ) ) ) ) )
6 eqid
 |-  dom ( voln ` X ) = dom ( voln ` X )
7 1 6 2 3 hoimbl
 |-  ( ph -> X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) e. dom ( voln ` X ) )
8 4 7 eqeltrid
 |-  ( ph -> I e. dom ( voln ` X ) )
9 1 8 mblvon
 |-  ( ph -> ( ( voln ` X ) ` I ) = ( ( voln* ` X ) ` I ) )
10 1 2 3 4 5 ovnhoi
 |-  ( ph -> ( ( voln* ` X ) ` I ) = ( A ( L ` X ) B ) )
11 9 10 eqtrd
 |-  ( ph -> ( ( voln ` X ) ` I ) = ( A ( L ` X ) B ) )