| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonhoi.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
vonhoi.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
| 3 |
|
vonhoi.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
| 4 |
|
vonhoi.c |
⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) |
| 5 |
|
vonhoi.l |
⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) |
| 6 |
|
eqid |
⊢ dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 ) |
| 7 |
1 6 2 3
|
hoimbl |
⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
| 8 |
4 7
|
eqeltrid |
⊢ ( 𝜑 → 𝐼 ∈ dom ( voln ‘ 𝑋 ) ) |
| 9 |
1 8
|
mblvon |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ) |
| 10 |
1 2 3 4 5
|
ovnhoi |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
| 11 |
9 10
|
eqtrd |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |