Description: The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). A direct consequence of Proposition 115D (b) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | vonhoi.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
vonhoi.a | ⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) | ||
vonhoi.b | ⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) | ||
vonhoi.c | ⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) | ||
vonhoi.l | ⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | ||
Assertion | vonhoi | ⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vonhoi.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
2 | vonhoi.a | ⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) | |
3 | vonhoi.b | ⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) | |
4 | vonhoi.c | ⊢ 𝐼 = X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) | |
5 | vonhoi.l | ⊢ 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( 𝑎 ‘ 𝑘 ) [,) ( 𝑏 ‘ 𝑘 ) ) ) ) ) ) | |
6 | eqid | ⊢ dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 ) | |
7 | 1 6 2 3 | hoimbl | ⊢ ( 𝜑 → X 𝑘 ∈ 𝑋 ( ( 𝐴 ‘ 𝑘 ) [,) ( 𝐵 ‘ 𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
8 | 4 7 | eqeltrid | ⊢ ( 𝜑 → 𝐼 ∈ dom ( voln ‘ 𝑋 ) ) |
9 | 1 8 | mblvon | ⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) ) |
10 | 1 2 3 4 5 | ovnhoi | ⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |
11 | 9 10 | eqtrd | ⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿 ‘ 𝑋 ) 𝐵 ) ) |