Metamath Proof Explorer


Theorem vonhoi

Description: The Lebesgue outer measure of a multidimensional half-open interval is its dimensional volume (the product of its length in each dimension, when the dimension is nonzero). A direct consequence of Proposition 115D (b) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonhoi.x ( 𝜑𝑋 ∈ Fin )
vonhoi.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
vonhoi.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
vonhoi.c 𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) )
vonhoi.l 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) )
Assertion vonhoi ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) )

Proof

Step Hyp Ref Expression
1 vonhoi.x ( 𝜑𝑋 ∈ Fin )
2 vonhoi.a ( 𝜑𝐴 : 𝑋 ⟶ ℝ )
3 vonhoi.b ( 𝜑𝐵 : 𝑋 ⟶ ℝ )
4 vonhoi.c 𝐼 = X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) )
5 vonhoi.l 𝐿 = ( 𝑥 ∈ Fin ↦ ( 𝑎 ∈ ( ℝ ↑m 𝑥 ) , 𝑏 ∈ ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , ∏ 𝑘𝑥 ( vol ‘ ( ( 𝑎𝑘 ) [,) ( 𝑏𝑘 ) ) ) ) ) )
6 eqid dom ( voln ‘ 𝑋 ) = dom ( voln ‘ 𝑋 )
7 1 6 2 3 hoimbl ( 𝜑X 𝑘𝑋 ( ( 𝐴𝑘 ) [,) ( 𝐵𝑘 ) ) ∈ dom ( voln ‘ 𝑋 ) )
8 4 7 eqeltrid ( 𝜑𝐼 ∈ dom ( voln ‘ 𝑋 ) )
9 1 8 mblvon ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) )
10 1 2 3 4 5 ovnhoi ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) )
11 9 10 eqtrd ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐼 ) = ( 𝐴 ( 𝐿𝑋 ) 𝐵 ) )