Step |
Hyp |
Ref |
Expression |
1 |
|
mblvon.1 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
mblvon.2 |
⊢ ( 𝜑 → 𝐴 ∈ dom ( voln ‘ 𝑋 ) ) |
3 |
1
|
vonval |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) = ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ) |
4 |
3
|
fveq1d |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = ( ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐴 ) ) |
5 |
1
|
dmvon |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
6 |
2 5
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
7 |
|
fvres |
⊢ ( 𝐴 ∈ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) → ( ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐴 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐴 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ) |
9 |
4 8
|
eqtrd |
⊢ ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ) |