Metamath Proof Explorer


Theorem mblvon

Description: The n-dimensional Lebesgue measure of a measurable set is the same as its n-dimensional Lebesgue outer measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses mblvon.1 ( 𝜑𝑋 ∈ Fin )
mblvon.2 ( 𝜑𝐴 ∈ dom ( voln ‘ 𝑋 ) )
Assertion mblvon ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 mblvon.1 ( 𝜑𝑋 ∈ Fin )
2 mblvon.2 ( 𝜑𝐴 ∈ dom ( voln ‘ 𝑋 ) )
3 1 vonval ( 𝜑 → ( voln ‘ 𝑋 ) = ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) )
4 3 fveq1d ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = ( ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐴 ) )
5 1 dmvon ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
6 2 5 eleqtrd ( 𝜑𝐴 ∈ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
7 fvres ( 𝐴 ∈ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) → ( ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐴 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) )
8 6 7 syl ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ‘ 𝐴 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) )
9 4 8 eqtrd ( 𝜑 → ( ( voln ‘ 𝑋 ) ‘ 𝐴 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) )