| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vonmblss.1 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
1
|
dmvon |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 3 |
1
|
ovnome |
⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas ) |
| 4 |
|
eqid |
⊢ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) |
| 5 |
4
|
caragenss |
⊢ ( ( voln* ‘ 𝑋 ) ∈ OutMeas → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) ) |
| 6 |
3 5
|
syl |
⊢ ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) ) |
| 7 |
1
|
dmovn |
⊢ ( 𝜑 → dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 8 |
6 7
|
sseqtrd |
⊢ ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 9 |
2 8
|
eqsstrd |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) ⊆ 𝒫 ( ℝ ↑m 𝑋 ) ) |