Metamath Proof Explorer


Theorem vonmblss

Description: n-dimensional Lebesgue measurable sets are subsets of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis vonmblss.1 ( 𝜑𝑋 ∈ Fin )
Assertion vonmblss ( 𝜑 → dom ( voln ‘ 𝑋 ) ⊆ 𝒫 ( ℝ ↑m 𝑋 ) )

Proof

Step Hyp Ref Expression
1 vonmblss.1 ( 𝜑𝑋 ∈ Fin )
2 1 dmvon ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
3 1 ovnome ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas )
4 eqid ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) )
5 4 caragenss ( ( voln* ‘ 𝑋 ) ∈ OutMeas → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) )
6 3 5 syl ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) )
7 1 dmovn ( 𝜑 → dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) )
8 6 7 sseqtrd ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ 𝒫 ( ℝ ↑m 𝑋 ) )
9 2 8 eqsstrd ( 𝜑 → dom ( voln ‘ 𝑋 ) ⊆ 𝒫 ( ℝ ↑m 𝑋 ) )