Metamath Proof Explorer


Theorem vonmblss

Description: n-dimensional Lebesgue measurable sets are subsets of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis vonmblss.1
|- ( ph -> X e. Fin )
Assertion vonmblss
|- ( ph -> dom ( voln ` X ) C_ ~P ( RR ^m X ) )

Proof

Step Hyp Ref Expression
1 vonmblss.1
 |-  ( ph -> X e. Fin )
2 1 dmvon
 |-  ( ph -> dom ( voln ` X ) = ( CaraGen ` ( voln* ` X ) ) )
3 1 ovnome
 |-  ( ph -> ( voln* ` X ) e. OutMeas )
4 eqid
 |-  ( CaraGen ` ( voln* ` X ) ) = ( CaraGen ` ( voln* ` X ) )
5 4 caragenss
 |-  ( ( voln* ` X ) e. OutMeas -> ( CaraGen ` ( voln* ` X ) ) C_ dom ( voln* ` X ) )
6 3 5 syl
 |-  ( ph -> ( CaraGen ` ( voln* ` X ) ) C_ dom ( voln* ` X ) )
7 1 dmovn
 |-  ( ph -> dom ( voln* ` X ) = ~P ( RR ^m X ) )
8 6 7 sseqtrd
 |-  ( ph -> ( CaraGen ` ( voln* ` X ) ) C_ ~P ( RR ^m X ) )
9 2 8 eqsstrd
 |-  ( ph -> dom ( voln ` X ) C_ ~P ( RR ^m X ) )