Metamath Proof Explorer


Theorem caragenss

Description: The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis caragenss.1
|- S = ( CaraGen ` O )
Assertion caragenss
|- ( O e. OutMeas -> S C_ dom O )

Proof

Step Hyp Ref Expression
1 caragenss.1
 |-  S = ( CaraGen ` O )
2 ssrab2
 |-  { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } C_ ~P U. dom O
3 2 a1i
 |-  ( O e. OutMeas -> { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } C_ ~P U. dom O )
4 1 a1i
 |-  ( O e. OutMeas -> S = ( CaraGen ` O ) )
5 caragenval
 |-  ( O e. OutMeas -> ( CaraGen ` O ) = { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } )
6 4 5 eqtrd
 |-  ( O e. OutMeas -> S = { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } )
7 omedm
 |-  ( O e. OutMeas -> dom O = ~P U. dom O )
8 6 7 sseq12d
 |-  ( O e. OutMeas -> ( S C_ dom O <-> { e e. ~P U. dom O | A. a e. ~P U. dom O ( ( O ` ( a i^i e ) ) +e ( O ` ( a \ e ) ) ) = ( O ` a ) } C_ ~P U. dom O ) )
9 3 8 mpbird
 |-  ( O e. OutMeas -> S C_ dom O )