Metamath Proof Explorer


Theorem omedm

Description: The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion omedm
|- ( O e. OutMeas -> dom O = ~P U. dom O )

Proof

Step Hyp Ref Expression
1 isome
 |-  ( O e. OutMeas -> ( O e. OutMeas <-> ( ( ( ( O : dom O --> ( 0 [,] +oo ) /\ dom O = ~P U. dom O ) /\ ( O ` (/) ) = 0 ) /\ A. x e. ~P U. dom O A. y e. ~P x ( O ` y ) <_ ( O ` x ) ) /\ A. x e. ~P dom O ( x ~<_ _om -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) ) )
2 1 ibi
 |-  ( O e. OutMeas -> ( ( ( ( O : dom O --> ( 0 [,] +oo ) /\ dom O = ~P U. dom O ) /\ ( O ` (/) ) = 0 ) /\ A. x e. ~P U. dom O A. y e. ~P x ( O ` y ) <_ ( O ` x ) ) /\ A. x e. ~P dom O ( x ~<_ _om -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) )
3 2 simplld
 |-  ( O e. OutMeas -> ( ( O : dom O --> ( 0 [,] +oo ) /\ dom O = ~P U. dom O ) /\ ( O ` (/) ) = 0 ) )
4 3 simplrd
 |-  ( O e. OutMeas -> dom O = ~P U. dom O )