Description: The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | omedm | |- ( O e. OutMeas -> dom O = ~P U. dom O ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isome | |- ( O e. OutMeas -> ( O e. OutMeas <-> ( ( ( ( O : dom O --> ( 0 [,] +oo ) /\ dom O = ~P U. dom O ) /\ ( O ` (/) ) = 0 ) /\ A. x e. ~P U. dom O A. y e. ~P x ( O ` y ) <_ ( O ` x ) ) /\ A. x e. ~P dom O ( x ~<_ _om -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) ) ) |
|
2 | 1 | ibi | |- ( O e. OutMeas -> ( ( ( ( O : dom O --> ( 0 [,] +oo ) /\ dom O = ~P U. dom O ) /\ ( O ` (/) ) = 0 ) /\ A. x e. ~P U. dom O A. y e. ~P x ( O ` y ) <_ ( O ` x ) ) /\ A. x e. ~P dom O ( x ~<_ _om -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) ) |
3 | 2 | simplld | |- ( O e. OutMeas -> ( ( O : dom O --> ( 0 [,] +oo ) /\ dom O = ~P U. dom O ) /\ ( O ` (/) ) = 0 ) ) |
4 | 3 | simplrd | |- ( O e. OutMeas -> dom O = ~P U. dom O ) |