Metamath Proof Explorer


Theorem omedm

Description: The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion omedm O OutMeas dom O = 𝒫 dom O

Proof

Step Hyp Ref Expression
1 isome O OutMeas O OutMeas O : dom O 0 +∞ dom O = 𝒫 dom O O = 0 x 𝒫 dom O y 𝒫 x O y O x x 𝒫 dom O x ω O x sum^ O x
2 1 ibi O OutMeas O : dom O 0 +∞ dom O = 𝒫 dom O O = 0 x 𝒫 dom O y 𝒫 x O y O x x 𝒫 dom O x ω O x sum^ O x
3 2 simplld O OutMeas O : dom O 0 +∞ dom O = 𝒫 dom O O = 0
4 3 simplrd O OutMeas dom O = 𝒫 dom O