Metamath Proof Explorer


Theorem omedm

Description: The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion omedm ( 𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂 )

Proof

Step Hyp Ref Expression
1 isome ( 𝑂 ∈ OutMeas → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥 ( 𝑂𝑦 ) ≤ ( 𝑂𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂𝑥 ) ) ) ) ) )
2 1 ibi ( 𝑂 ∈ OutMeas → ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥 ( 𝑂𝑦 ) ≤ ( 𝑂𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂𝑥 ) ) ) ) )
3 2 simplld ( 𝑂 ∈ OutMeas → ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) )
4 3 simplrd ( 𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 dom 𝑂 )