Metamath Proof Explorer


Theorem caragensplit

Description: If E is in the set generated by the Caratheodory's method, then it splits any set A in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set A . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragensplit.o ( 𝜑𝑂 ∈ OutMeas )
caragensplit.s 𝑆 = ( CaraGen ‘ 𝑂 )
caragensplit.x 𝑋 = dom 𝑂
caragensplit.e ( 𝜑𝐸𝑆 )
caragensplit.a ( 𝜑𝐴𝑋 )
Assertion caragensplit ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴𝐸 ) ) ) = ( 𝑂𝐴 ) )

Proof

Step Hyp Ref Expression
1 caragensplit.o ( 𝜑𝑂 ∈ OutMeas )
2 caragensplit.s 𝑆 = ( CaraGen ‘ 𝑂 )
3 caragensplit.x 𝑋 = dom 𝑂
4 caragensplit.e ( 𝜑𝐸𝑆 )
5 caragensplit.a ( 𝜑𝐴𝑋 )
6 1 3 unidmex ( 𝜑𝑋 ∈ V )
7 ssexg ( ( 𝐴𝑋𝑋 ∈ V ) → 𝐴 ∈ V )
8 5 6 7 syl2anc ( 𝜑𝐴 ∈ V )
9 elpwg ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝑋𝐴𝑋 ) )
10 8 9 syl ( 𝜑 → ( 𝐴 ∈ 𝒫 𝑋𝐴𝑋 ) )
11 5 10 mpbird ( 𝜑𝐴 ∈ 𝒫 𝑋 )
12 3 pweqi 𝒫 𝑋 = 𝒫 dom 𝑂
13 11 12 eleqtrdi ( 𝜑𝐴 ∈ 𝒫 dom 𝑂 )
14 1 2 caragenel ( 𝜑 → ( 𝐸𝑆 ↔ ( 𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) ) ) )
15 4 14 mpbid ( 𝜑 → ( 𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) ) )
16 15 simprd ( 𝜑 → ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) )
17 ineq1 ( 𝑎 = 𝐴 → ( 𝑎𝐸 ) = ( 𝐴𝐸 ) )
18 17 fveq2d ( 𝑎 = 𝐴 → ( 𝑂 ‘ ( 𝑎𝐸 ) ) = ( 𝑂 ‘ ( 𝐴𝐸 ) ) )
19 difeq1 ( 𝑎 = 𝐴 → ( 𝑎𝐸 ) = ( 𝐴𝐸 ) )
20 19 fveq2d ( 𝑎 = 𝐴 → ( 𝑂 ‘ ( 𝑎𝐸 ) ) = ( 𝑂 ‘ ( 𝐴𝐸 ) ) )
21 18 20 oveq12d ( 𝑎 = 𝐴 → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( ( 𝑂 ‘ ( 𝐴𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴𝐸 ) ) ) )
22 fveq2 ( 𝑎 = 𝐴 → ( 𝑂𝑎 ) = ( 𝑂𝐴 ) )
23 21 22 eqeq12d ( 𝑎 = 𝐴 → ( ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) ↔ ( ( 𝑂 ‘ ( 𝐴𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴𝐸 ) ) ) = ( 𝑂𝐴 ) ) )
24 23 rspcva ( ( 𝐴 ∈ 𝒫 dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) ) → ( ( 𝑂 ‘ ( 𝐴𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴𝐸 ) ) ) = ( 𝑂𝐴 ) )
25 13 16 24 syl2anc ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴𝐸 ) ) ) = ( 𝑂𝐴 ) )