Step |
Hyp |
Ref |
Expression |
1 |
|
caragensplit.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
caragensplit.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
3 |
|
caragensplit.x |
⊢ 𝑋 = ∪ dom 𝑂 |
4 |
|
caragensplit.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
5 |
|
caragensplit.a |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) |
6 |
1 3
|
unidmex |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
7 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝑋 ∧ 𝑋 ∈ V ) → 𝐴 ∈ V ) |
8 |
5 6 7
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
9 |
|
elpwg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋 ) ) |
11 |
5 10
|
mpbird |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝑋 ) |
12 |
3
|
pweqi |
⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
13 |
11 12
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 ∪ dom 𝑂 ) |
14 |
1 2
|
caragenel |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝑆 ↔ ( 𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) ) ) |
15 |
4 14
|
mpbid |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) ) |
16 |
15
|
simprd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) |
17 |
|
ineq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∩ 𝐸 ) = ( 𝐴 ∩ 𝐸 ) ) |
18 |
17
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) = ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) ) |
19 |
|
difeq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ∖ 𝐸 ) = ( 𝐴 ∖ 𝐸 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) = ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) |
21 |
18 20
|
oveq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑎 = 𝐴 → ( 𝑂 ‘ 𝑎 ) = ( 𝑂 ‘ 𝐴 ) ) |
23 |
21 22
|
eqeq12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ↔ ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) ) |
24 |
23
|
rspcva |
⊢ ( ( 𝐴 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |
25 |
13 16 24
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝐴 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝐴 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝐴 ) ) |