| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caragensplit.o |
|- ( ph -> O e. OutMeas ) |
| 2 |
|
caragensplit.s |
|- S = ( CaraGen ` O ) |
| 3 |
|
caragensplit.x |
|- X = U. dom O |
| 4 |
|
caragensplit.e |
|- ( ph -> E e. S ) |
| 5 |
|
caragensplit.a |
|- ( ph -> A C_ X ) |
| 6 |
1 3
|
unidmex |
|- ( ph -> X e. _V ) |
| 7 |
|
ssexg |
|- ( ( A C_ X /\ X e. _V ) -> A e. _V ) |
| 8 |
5 6 7
|
syl2anc |
|- ( ph -> A e. _V ) |
| 9 |
|
elpwg |
|- ( A e. _V -> ( A e. ~P X <-> A C_ X ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( A e. ~P X <-> A C_ X ) ) |
| 11 |
5 10
|
mpbird |
|- ( ph -> A e. ~P X ) |
| 12 |
3
|
pweqi |
|- ~P X = ~P U. dom O |
| 13 |
11 12
|
eleqtrdi |
|- ( ph -> A e. ~P U. dom O ) |
| 14 |
1 2
|
caragenel |
|- ( ph -> ( E e. S <-> ( E e. ~P U. dom O /\ A. a e. ~P U. dom O ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( O ` a ) ) ) ) |
| 15 |
4 14
|
mpbid |
|- ( ph -> ( E e. ~P U. dom O /\ A. a e. ~P U. dom O ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( O ` a ) ) ) |
| 16 |
15
|
simprd |
|- ( ph -> A. a e. ~P U. dom O ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( O ` a ) ) |
| 17 |
|
ineq1 |
|- ( a = A -> ( a i^i E ) = ( A i^i E ) ) |
| 18 |
17
|
fveq2d |
|- ( a = A -> ( O ` ( a i^i E ) ) = ( O ` ( A i^i E ) ) ) |
| 19 |
|
difeq1 |
|- ( a = A -> ( a \ E ) = ( A \ E ) ) |
| 20 |
19
|
fveq2d |
|- ( a = A -> ( O ` ( a \ E ) ) = ( O ` ( A \ E ) ) ) |
| 21 |
18 20
|
oveq12d |
|- ( a = A -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( ( O ` ( A i^i E ) ) +e ( O ` ( A \ E ) ) ) ) |
| 22 |
|
fveq2 |
|- ( a = A -> ( O ` a ) = ( O ` A ) ) |
| 23 |
21 22
|
eqeq12d |
|- ( a = A -> ( ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( O ` a ) <-> ( ( O ` ( A i^i E ) ) +e ( O ` ( A \ E ) ) ) = ( O ` A ) ) ) |
| 24 |
23
|
rspcva |
|- ( ( A e. ~P U. dom O /\ A. a e. ~P U. dom O ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( O ` a ) ) -> ( ( O ` ( A i^i E ) ) +e ( O ` ( A \ E ) ) ) = ( O ` A ) ) |
| 25 |
13 16 24
|
syl2anc |
|- ( ph -> ( ( O ` ( A i^i E ) ) +e ( O ` ( A \ E ) ) ) = ( O ` A ) ) |