| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caragenelss.o |  |-  ( ph -> O e. OutMeas ) | 
						
							| 2 |  | caragenelss.s |  |-  S = ( CaraGen ` O ) | 
						
							| 3 |  | caragenelss.a |  |-  ( ph -> A e. S ) | 
						
							| 4 |  | caragenelss.x |  |-  X = U. dom O | 
						
							| 5 | 1 2 | caragenel |  |-  ( ph -> ( A e. S <-> ( A e. ~P U. dom O /\ A. x e. ~P U. dom O ( ( O ` ( x i^i A ) ) +e ( O ` ( x \ A ) ) ) = ( O ` x ) ) ) ) | 
						
							| 6 | 3 5 | mpbid |  |-  ( ph -> ( A e. ~P U. dom O /\ A. x e. ~P U. dom O ( ( O ` ( x i^i A ) ) +e ( O ` ( x \ A ) ) ) = ( O ` x ) ) ) | 
						
							| 7 | 6 | simpld |  |-  ( ph -> A e. ~P U. dom O ) | 
						
							| 8 | 4 | eqcomi |  |-  U. dom O = X | 
						
							| 9 | 8 | pweqi |  |-  ~P U. dom O = ~P X | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ~P U. dom O = ~P X ) | 
						
							| 11 | 7 10 | eleqtrd |  |-  ( ph -> A e. ~P X ) | 
						
							| 12 |  | elpwg |  |-  ( A e. S -> ( A e. ~P X <-> A C_ X ) ) | 
						
							| 13 | 3 12 | syl |  |-  ( ph -> ( A e. ~P X <-> A C_ X ) ) | 
						
							| 14 | 11 13 | mpbid |  |-  ( ph -> A C_ X ) |