| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caragenelss.o |
|- ( ph -> O e. OutMeas ) |
| 2 |
|
caragenelss.s |
|- S = ( CaraGen ` O ) |
| 3 |
|
caragenelss.a |
|- ( ph -> A e. S ) |
| 4 |
|
caragenelss.x |
|- X = U. dom O |
| 5 |
1 2
|
caragenel |
|- ( ph -> ( A e. S <-> ( A e. ~P U. dom O /\ A. x e. ~P U. dom O ( ( O ` ( x i^i A ) ) +e ( O ` ( x \ A ) ) ) = ( O ` x ) ) ) ) |
| 6 |
3 5
|
mpbid |
|- ( ph -> ( A e. ~P U. dom O /\ A. x e. ~P U. dom O ( ( O ` ( x i^i A ) ) +e ( O ` ( x \ A ) ) ) = ( O ` x ) ) ) |
| 7 |
6
|
simpld |
|- ( ph -> A e. ~P U. dom O ) |
| 8 |
4
|
eqcomi |
|- U. dom O = X |
| 9 |
8
|
pweqi |
|- ~P U. dom O = ~P X |
| 10 |
9
|
a1i |
|- ( ph -> ~P U. dom O = ~P X ) |
| 11 |
7 10
|
eleqtrd |
|- ( ph -> A e. ~P X ) |
| 12 |
|
elpwg |
|- ( A e. S -> ( A e. ~P X <-> A C_ X ) ) |
| 13 |
3 12
|
syl |
|- ( ph -> ( A e. ~P X <-> A C_ X ) ) |
| 14 |
11 13
|
mpbid |
|- ( ph -> A C_ X ) |