Metamath Proof Explorer


Theorem caragenelss

Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragenelss.o
|- ( ph -> O e. OutMeas )
caragenelss.s
|- S = ( CaraGen ` O )
caragenelss.a
|- ( ph -> A e. S )
caragenelss.x
|- X = U. dom O
Assertion caragenelss
|- ( ph -> A C_ X )

Proof

Step Hyp Ref Expression
1 caragenelss.o
 |-  ( ph -> O e. OutMeas )
2 caragenelss.s
 |-  S = ( CaraGen ` O )
3 caragenelss.a
 |-  ( ph -> A e. S )
4 caragenelss.x
 |-  X = U. dom O
5 1 2 caragenel
 |-  ( ph -> ( A e. S <-> ( A e. ~P U. dom O /\ A. x e. ~P U. dom O ( ( O ` ( x i^i A ) ) +e ( O ` ( x \ A ) ) ) = ( O ` x ) ) ) )
6 3 5 mpbid
 |-  ( ph -> ( A e. ~P U. dom O /\ A. x e. ~P U. dom O ( ( O ` ( x i^i A ) ) +e ( O ` ( x \ A ) ) ) = ( O ` x ) ) )
7 6 simpld
 |-  ( ph -> A e. ~P U. dom O )
8 4 eqcomi
 |-  U. dom O = X
9 8 pweqi
 |-  ~P U. dom O = ~P X
10 9 a1i
 |-  ( ph -> ~P U. dom O = ~P X )
11 7 10 eleqtrd
 |-  ( ph -> A e. ~P X )
12 elpwg
 |-  ( A e. S -> ( A e. ~P X <-> A C_ X ) )
13 3 12 syl
 |-  ( ph -> ( A e. ~P X <-> A C_ X ) )
14 11 13 mpbid
 |-  ( ph -> A C_ X )