Metamath Proof Explorer


Theorem caragenelss

Description: An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragenelss.o φ O OutMeas
caragenelss.s S = CaraGen O
caragenelss.a φ A S
caragenelss.x X = dom O
Assertion caragenelss φ A X

Proof

Step Hyp Ref Expression
1 caragenelss.o φ O OutMeas
2 caragenelss.s S = CaraGen O
3 caragenelss.a φ A S
4 caragenelss.x X = dom O
5 1 2 caragenel φ A S A 𝒫 dom O x 𝒫 dom O O x A + 𝑒 O x A = O x
6 3 5 mpbid φ A 𝒫 dom O x 𝒫 dom O O x A + 𝑒 O x A = O x
7 6 simpld φ A 𝒫 dom O
8 4 eqcomi dom O = X
9 8 pweqi 𝒫 dom O = 𝒫 X
10 9 a1i φ 𝒫 dom O = 𝒫 X
11 7 10 eleqtrd φ A 𝒫 X
12 elpwg A S A 𝒫 X A X
13 3 12 syl φ A 𝒫 X A X
14 11 13 mpbid φ A X