Metamath Proof Explorer


Theorem carageneld

Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses carageneld.o φ O OutMeas
carageneld.x X = dom O
carageneld.s S = CaraGen O
carageneld.e φ E 𝒫 X
carageneld.a φ a 𝒫 X O a E + 𝑒 O a E = O a
Assertion carageneld φ E S

Proof

Step Hyp Ref Expression
1 carageneld.o φ O OutMeas
2 carageneld.x X = dom O
3 carageneld.s S = CaraGen O
4 carageneld.e φ E 𝒫 X
5 carageneld.a φ a 𝒫 X O a E + 𝑒 O a E = O a
6 2 pweqi 𝒫 X = 𝒫 dom O
7 4 6 eleqtrdi φ E 𝒫 dom O
8 simpl φ a 𝒫 dom O φ
9 6 eleq2i a 𝒫 X a 𝒫 dom O
10 9 bicomi a 𝒫 dom O a 𝒫 X
11 10 biimpi a 𝒫 dom O a 𝒫 X
12 11 adantl φ a 𝒫 dom O a 𝒫 X
13 8 12 5 syl2anc φ a 𝒫 dom O O a E + 𝑒 O a E = O a
14 13 ralrimiva φ a 𝒫 dom O O a E + 𝑒 O a E = O a
15 7 14 jca φ E 𝒫 dom O a 𝒫 dom O O a E + 𝑒 O a E = O a
16 1 3 caragenel φ E S E 𝒫 dom O a 𝒫 dom O O a E + 𝑒 O a E = O a
17 15 16 mpbird φ E S