Metamath Proof Explorer


Theorem carageneld

Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses carageneld.o φOOutMeas
carageneld.x X=domO
carageneld.s S=CaraGenO
carageneld.e φE𝒫X
carageneld.a φa𝒫XOaE+𝑒OaE=Oa
Assertion carageneld φES

Proof

Step Hyp Ref Expression
1 carageneld.o φOOutMeas
2 carageneld.x X=domO
3 carageneld.s S=CaraGenO
4 carageneld.e φE𝒫X
5 carageneld.a φa𝒫XOaE+𝑒OaE=Oa
6 2 pweqi 𝒫X=𝒫domO
7 4 6 eleqtrdi φE𝒫domO
8 simpl φa𝒫domOφ
9 6 eleq2i a𝒫Xa𝒫domO
10 9 bicomi a𝒫domOa𝒫X
11 10 biimpi a𝒫domOa𝒫X
12 11 adantl φa𝒫domOa𝒫X
13 8 12 5 syl2anc φa𝒫domOOaE+𝑒OaE=Oa
14 13 ralrimiva φa𝒫domOOaE+𝑒OaE=Oa
15 7 14 jca φE𝒫domOa𝒫domOOaE+𝑒OaE=Oa
16 1 3 caragenel φESE𝒫domOa𝒫domOOaE+𝑒OaE=Oa
17 15 16 mpbird φES