Metamath Proof Explorer


Theorem omecl

Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omecl.o φ O OutMeas
omecl.x X = dom O
omecl.ss φ A X
Assertion omecl φ O A 0 +∞

Proof

Step Hyp Ref Expression
1 omecl.o φ O OutMeas
2 omecl.x X = dom O
3 omecl.ss φ A X
4 1 2 omef φ O : 𝒫 X 0 +∞
5 2 a1i φ X = dom O
6 1 dmexd φ dom O V
7 6 uniexd φ dom O V
8 5 7 eqeltrd φ X V
9 8 3 ssexd φ A V
10 elpwg A V A 𝒫 X A X
11 9 10 syl φ A 𝒫 X A X
12 3 11 mpbird φ A 𝒫 X
13 4 12 ffvelrnd φ O A 0 +∞