Metamath Proof Explorer


Definition df-ome

Description: Define the class of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion df-ome OutMeas=x|x:domx0+∞domx=𝒫domxx=0y𝒫domxz𝒫yxzxyy𝒫domxyωxysum^xy

Detailed syntax breakdown

Step Hyp Ref Expression
0 come classOutMeas
1 vx setvarx
2 1 cv setvarx
3 2 cdm classdomx
4 cc0 class0
5 cicc class.
6 cpnf class+∞
7 4 6 5 co class0+∞
8 3 7 2 wf wffx:domx0+∞
9 3 cuni classdomx
10 9 cpw class𝒫domx
11 3 10 wceq wffdomx=𝒫domx
12 8 11 wa wffx:domx0+∞domx=𝒫domx
13 c0 class
14 13 2 cfv classx
15 14 4 wceq wffx=0
16 12 15 wa wffx:domx0+∞domx=𝒫domxx=0
17 vy setvary
18 vz setvarz
19 17 cv setvary
20 19 cpw class𝒫y
21 18 cv setvarz
22 21 2 cfv classxz
23 cle class
24 19 2 cfv classxy
25 22 24 23 wbr wffxzxy
26 25 18 20 wral wffz𝒫yxzxy
27 26 17 10 wral wffy𝒫domxz𝒫yxzxy
28 16 27 wa wffx:domx0+∞domx=𝒫domxx=0y𝒫domxz𝒫yxzxy
29 3 cpw class𝒫domx
30 cdom class
31 com classω
32 19 31 30 wbr wffyω
33 19 cuni classy
34 33 2 cfv classxy
35 csumge0 classsum^
36 2 19 cres classxy
37 36 35 cfv classsum^xy
38 34 37 23 wbr wffxysum^xy
39 32 38 wi wffyωxysum^xy
40 39 17 29 wral wffy𝒫domxyωxysum^xy
41 28 40 wa wffx:domx0+∞domx=𝒫domxx=0y𝒫domxz𝒫yxzxyy𝒫domxyωxysum^xy
42 41 1 cab classx|x:domx0+∞domx=𝒫domxx=0y𝒫domxz𝒫yxzxyy𝒫domxyωxysum^xy
43 0 42 wceq wffOutMeas=x|x:domx0+∞domx=𝒫domxx=0y𝒫domxz𝒫yxzxyy𝒫domxyωxysum^xy