| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omecl.o |  |-  ( ph -> O e. OutMeas ) | 
						
							| 2 |  | omecl.x |  |-  X = U. dom O | 
						
							| 3 |  | omecl.ss |  |-  ( ph -> A C_ X ) | 
						
							| 4 | 1 2 | omef |  |-  ( ph -> O : ~P X --> ( 0 [,] +oo ) ) | 
						
							| 5 | 2 | a1i |  |-  ( ph -> X = U. dom O ) | 
						
							| 6 | 1 | dmexd |  |-  ( ph -> dom O e. _V ) | 
						
							| 7 | 6 | uniexd |  |-  ( ph -> U. dom O e. _V ) | 
						
							| 8 | 5 7 | eqeltrd |  |-  ( ph -> X e. _V ) | 
						
							| 9 | 8 3 | ssexd |  |-  ( ph -> A e. _V ) | 
						
							| 10 |  | elpwg |  |-  ( A e. _V -> ( A e. ~P X <-> A C_ X ) ) | 
						
							| 11 | 9 10 | syl |  |-  ( ph -> ( A e. ~P X <-> A C_ X ) ) | 
						
							| 12 | 3 11 | mpbird |  |-  ( ph -> A e. ~P X ) | 
						
							| 13 | 4 12 | ffvelcdmd |  |-  ( ph -> ( O ` A ) e. ( 0 [,] +oo ) ) |