Step |
Hyp |
Ref |
Expression |
1 |
|
carageneld.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
carageneld.x |
⊢ 𝑋 = ∪ dom 𝑂 |
3 |
|
carageneld.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
4 |
|
carageneld.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑋 ) |
5 |
|
carageneld.a |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) |
6 |
2
|
pweqi |
⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
7 |
4 6
|
eleqtrdi |
⊢ ( 𝜑 → 𝐸 ∈ 𝒫 ∪ dom 𝑂 ) |
8 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → 𝜑 ) |
9 |
6
|
eleq2i |
⊢ ( 𝑎 ∈ 𝒫 𝑋 ↔ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) |
10 |
9
|
bicomi |
⊢ ( 𝑎 ∈ 𝒫 ∪ dom 𝑂 ↔ 𝑎 ∈ 𝒫 𝑋 ) |
11 |
10
|
biimpi |
⊢ ( 𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ∈ 𝒫 𝑋 ) |
12 |
11
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → 𝑎 ∈ 𝒫 𝑋 ) |
13 |
8 12 5
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) |
14 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) |
15 |
7 14
|
jca |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) ) |
16 |
1 3
|
caragenel |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝑆 ↔ ( 𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) ) ) |
17 |
15 16
|
mpbird |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |