Metamath Proof Explorer


Theorem carageneld

Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses carageneld.o ( 𝜑𝑂 ∈ OutMeas )
carageneld.x 𝑋 = dom 𝑂
carageneld.s 𝑆 = ( CaraGen ‘ 𝑂 )
carageneld.e ( 𝜑𝐸 ∈ 𝒫 𝑋 )
carageneld.a ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) )
Assertion carageneld ( 𝜑𝐸𝑆 )

Proof

Step Hyp Ref Expression
1 carageneld.o ( 𝜑𝑂 ∈ OutMeas )
2 carageneld.x 𝑋 = dom 𝑂
3 carageneld.s 𝑆 = ( CaraGen ‘ 𝑂 )
4 carageneld.e ( 𝜑𝐸 ∈ 𝒫 𝑋 )
5 carageneld.a ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) )
6 2 pweqi 𝒫 𝑋 = 𝒫 dom 𝑂
7 4 6 eleqtrdi ( 𝜑𝐸 ∈ 𝒫 dom 𝑂 )
8 simpl ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → 𝜑 )
9 6 eleq2i ( 𝑎 ∈ 𝒫 𝑋𝑎 ∈ 𝒫 dom 𝑂 )
10 9 bicomi ( 𝑎 ∈ 𝒫 dom 𝑂𝑎 ∈ 𝒫 𝑋 )
11 10 biimpi ( 𝑎 ∈ 𝒫 dom 𝑂𝑎 ∈ 𝒫 𝑋 )
12 11 adantl ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → 𝑎 ∈ 𝒫 𝑋 )
13 8 12 5 syl2anc ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) )
14 13 ralrimiva ( 𝜑 → ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) )
15 7 14 jca ( 𝜑 → ( 𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) ) )
16 1 3 caragenel ( 𝜑 → ( 𝐸𝑆 ↔ ( 𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) ) ) )
17 15 16 mpbird ( 𝜑𝐸𝑆 )