| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caragenel.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 2 |  | caragenel.s | ⊢ 𝑆  =  ( CaraGen ‘ 𝑂 ) | 
						
							| 3 |  | caragenval | ⊢ ( 𝑂  ∈  OutMeas  →  ( CaraGen ‘ 𝑂 )  =  { 𝑒  ∈  𝒫  ∪  dom  𝑂  ∣  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝑒 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝑒 ) ) )  =  ( 𝑂 ‘ 𝑎 ) } ) | 
						
							| 4 | 1 3 | syl | ⊢ ( 𝜑  →  ( CaraGen ‘ 𝑂 )  =  { 𝑒  ∈  𝒫  ∪  dom  𝑂  ∣  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝑒 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝑒 ) ) )  =  ( 𝑂 ‘ 𝑎 ) } ) | 
						
							| 5 | 2 4 | eqtrid | ⊢ ( 𝜑  →  𝑆  =  { 𝑒  ∈  𝒫  ∪  dom  𝑂  ∣  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝑒 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝑒 ) ) )  =  ( 𝑂 ‘ 𝑎 ) } ) | 
						
							| 6 | 5 | eleq2d | ⊢ ( 𝜑  →  ( 𝐸  ∈  𝑆  ↔  𝐸  ∈  { 𝑒  ∈  𝒫  ∪  dom  𝑂  ∣  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝑒 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝑒 ) ) )  =  ( 𝑂 ‘ 𝑎 ) } ) ) | 
						
							| 7 |  | ineq2 | ⊢ ( 𝑒  =  𝐸  →  ( 𝑎  ∩  𝑒 )  =  ( 𝑎  ∩  𝐸 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑒  =  𝐸  →  ( 𝑂 ‘ ( 𝑎  ∩  𝑒 ) )  =  ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) ) ) | 
						
							| 9 |  | difeq2 | ⊢ ( 𝑒  =  𝐸  →  ( 𝑎  ∖  𝑒 )  =  ( 𝑎  ∖  𝐸 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝑒  =  𝐸  →  ( 𝑂 ‘ ( 𝑎  ∖  𝑒 ) )  =  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) ) | 
						
							| 11 | 8 10 | oveq12d | ⊢ ( 𝑒  =  𝐸  →  ( ( 𝑂 ‘ ( 𝑎  ∩  𝑒 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝑒 ) ) )  =  ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) ) ) | 
						
							| 12 | 11 | eqeq1d | ⊢ ( 𝑒  =  𝐸  →  ( ( ( 𝑂 ‘ ( 𝑎  ∩  𝑒 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝑒 ) ) )  =  ( 𝑂 ‘ 𝑎 )  ↔  ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) ) | 
						
							| 13 | 12 | ralbidv | ⊢ ( 𝑒  =  𝐸  →  ( ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝑒 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝑒 ) ) )  =  ( 𝑂 ‘ 𝑎 )  ↔  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) ) | 
						
							| 14 | 13 | elrab | ⊢ ( 𝐸  ∈  { 𝑒  ∈  𝒫  ∪  dom  𝑂  ∣  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝑒 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝑒 ) ) )  =  ( 𝑂 ‘ 𝑎 ) }  ↔  ( 𝐸  ∈  𝒫  ∪  dom  𝑂  ∧  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( 𝐸  ∈  { 𝑒  ∈  𝒫  ∪  dom  𝑂  ∣  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝑒 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝑒 ) ) )  =  ( 𝑂 ‘ 𝑎 ) }  ↔  ( 𝐸  ∈  𝒫  ∪  dom  𝑂  ∧  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) ) ) | 
						
							| 16 | 6 15 | bitrd | ⊢ ( 𝜑  →  ( 𝐸  ∈  𝑆  ↔  ( 𝐸  ∈  𝒫  ∪  dom  𝑂  ∧  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) ) ) |