Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝑂 ∈ OutMeas → 𝑂 ∈ OutMeas ) |
2 |
|
dmexg |
⊢ ( 𝑂 ∈ OutMeas → dom 𝑂 ∈ V ) |
3 |
2
|
uniexd |
⊢ ( 𝑂 ∈ OutMeas → ∪ dom 𝑂 ∈ V ) |
4 |
3
|
pwexd |
⊢ ( 𝑂 ∈ OutMeas → 𝒫 ∪ dom 𝑂 ∈ V ) |
5 |
|
rabexg |
⊢ ( 𝒫 ∪ dom 𝑂 ∈ V → { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ∈ V ) |
6 |
4 5
|
syl |
⊢ ( 𝑂 ∈ OutMeas → { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ∈ V ) |
7 |
|
dmeq |
⊢ ( 𝑜 = 𝑂 → dom 𝑜 = dom 𝑂 ) |
8 |
7
|
unieqd |
⊢ ( 𝑜 = 𝑂 → ∪ dom 𝑜 = ∪ dom 𝑂 ) |
9 |
8
|
pweqd |
⊢ ( 𝑜 = 𝑂 → 𝒫 ∪ dom 𝑜 = 𝒫 ∪ dom 𝑂 ) |
10 |
9
|
raleqdv |
⊢ ( 𝑜 = 𝑂 → ( ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑜 ( ( 𝑜 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑜 ‘ 𝑎 ) ↔ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑜 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑜 ‘ 𝑎 ) ) ) |
11 |
|
fveq1 |
⊢ ( 𝑜 = 𝑂 → ( 𝑜 ‘ ( 𝑎 ∩ 𝑒 ) ) = ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) ) |
12 |
|
fveq1 |
⊢ ( 𝑜 = 𝑂 → ( 𝑜 ‘ ( 𝑎 ∖ 𝑒 ) ) = ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝑜 = 𝑂 → ( ( 𝑜 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) ) |
14 |
|
fveq1 |
⊢ ( 𝑜 = 𝑂 → ( 𝑜 ‘ 𝑎 ) = ( 𝑂 ‘ 𝑎 ) ) |
15 |
13 14
|
eqeq12d |
⊢ ( 𝑜 = 𝑂 → ( ( ( 𝑜 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑜 ‘ 𝑎 ) ↔ ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) ) |
16 |
15
|
ralbidv |
⊢ ( 𝑜 = 𝑂 → ( ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑜 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑜 ‘ 𝑎 ) ↔ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) ) |
17 |
10 16
|
bitrd |
⊢ ( 𝑜 = 𝑂 → ( ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑜 ( ( 𝑜 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑜 ‘ 𝑎 ) ↔ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) ) |
18 |
9 17
|
rabeqbidv |
⊢ ( 𝑜 = 𝑂 → { 𝑒 ∈ 𝒫 ∪ dom 𝑜 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑜 ( ( 𝑜 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑜 ‘ 𝑎 ) } = { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ) |
19 |
|
df-caragen |
⊢ CaraGen = ( 𝑜 ∈ OutMeas ↦ { 𝑒 ∈ 𝒫 ∪ dom 𝑜 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑜 ( ( 𝑜 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑜 ‘ 𝑎 ) } ) |
20 |
18 19
|
fvmptg |
⊢ ( ( 𝑂 ∈ OutMeas ∧ { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ∈ V ) → ( CaraGen ‘ 𝑂 ) = { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ) |
21 |
1 6 20
|
syl2anc |
⊢ ( 𝑂 ∈ OutMeas → ( CaraGen ‘ 𝑂 ) = { 𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝑒 ) ) ) = ( 𝑂 ‘ 𝑎 ) } ) |