Metamath Proof Explorer


Theorem caragenval

Description: The sigma-algebra generated by an outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion caragenval ( 𝑂 ∈ OutMeas → ( CaraGen ‘ 𝑂 ) = { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } )

Proof

Step Hyp Ref Expression
1 id ( 𝑂 ∈ OutMeas → 𝑂 ∈ OutMeas )
2 dmexg ( 𝑂 ∈ OutMeas → dom 𝑂 ∈ V )
3 2 uniexd ( 𝑂 ∈ OutMeas → dom 𝑂 ∈ V )
4 3 pwexd ( 𝑂 ∈ OutMeas → 𝒫 dom 𝑂 ∈ V )
5 rabexg ( 𝒫 dom 𝑂 ∈ V → { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } ∈ V )
6 4 5 syl ( 𝑂 ∈ OutMeas → { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } ∈ V )
7 dmeq ( 𝑜 = 𝑂 → dom 𝑜 = dom 𝑂 )
8 7 unieqd ( 𝑜 = 𝑂 dom 𝑜 = dom 𝑂 )
9 8 pweqd ( 𝑜 = 𝑂 → 𝒫 dom 𝑜 = 𝒫 dom 𝑂 )
10 9 raleqdv ( 𝑜 = 𝑂 → ( ∀ 𝑎 ∈ 𝒫 dom 𝑜 ( ( 𝑜 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑜𝑎 ) ↔ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑜 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑜𝑎 ) ) )
11 fveq1 ( 𝑜 = 𝑂 → ( 𝑜 ‘ ( 𝑎𝑒 ) ) = ( 𝑂 ‘ ( 𝑎𝑒 ) ) )
12 fveq1 ( 𝑜 = 𝑂 → ( 𝑜 ‘ ( 𝑎𝑒 ) ) = ( 𝑂 ‘ ( 𝑎𝑒 ) ) )
13 11 12 oveq12d ( 𝑜 = 𝑂 → ( ( 𝑜 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎𝑒 ) ) ) = ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) )
14 fveq1 ( 𝑜 = 𝑂 → ( 𝑜𝑎 ) = ( 𝑂𝑎 ) )
15 13 14 eqeq12d ( 𝑜 = 𝑂 → ( ( ( 𝑜 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑜𝑎 ) ↔ ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) ) )
16 15 ralbidv ( 𝑜 = 𝑂 → ( ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑜 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑜𝑎 ) ↔ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) ) )
17 10 16 bitrd ( 𝑜 = 𝑂 → ( ∀ 𝑎 ∈ 𝒫 dom 𝑜 ( ( 𝑜 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑜𝑎 ) ↔ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) ) )
18 9 17 rabeqbidv ( 𝑜 = 𝑂 → { 𝑒 ∈ 𝒫 dom 𝑜 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑜 ( ( 𝑜 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑜𝑎 ) } = { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } )
19 df-caragen CaraGen = ( 𝑜 ∈ OutMeas ↦ { 𝑒 ∈ 𝒫 dom 𝑜 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑜 ( ( 𝑜 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑜 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑜𝑎 ) } )
20 18 19 fvmptg ( ( 𝑂 ∈ OutMeas ∧ { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } ∈ V ) → ( CaraGen ‘ 𝑂 ) = { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } )
21 1 6 20 syl2anc ( 𝑂 ∈ OutMeas → ( CaraGen ‘ 𝑂 ) = { 𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀ 𝑎 ∈ 𝒫 dom 𝑂 ( ( 𝑂 ‘ ( 𝑎𝑒 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝑒 ) ) ) = ( 𝑂𝑎 ) } )