Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝑥 = 𝑂 → 𝑥 = 𝑂 ) |
2 |
|
dmeq |
⊢ ( 𝑥 = 𝑂 → dom 𝑥 = dom 𝑂 ) |
3 |
1 2
|
feq12d |
⊢ ( 𝑥 = 𝑂 → ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ↔ 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ) ) |
4 |
2
|
unieqd |
⊢ ( 𝑥 = 𝑂 → ∪ dom 𝑥 = ∪ dom 𝑂 ) |
5 |
4
|
pweqd |
⊢ ( 𝑥 = 𝑂 → 𝒫 ∪ dom 𝑥 = 𝒫 ∪ dom 𝑂 ) |
6 |
2 5
|
eqeq12d |
⊢ ( 𝑥 = 𝑂 → ( dom 𝑥 = 𝒫 ∪ dom 𝑥 ↔ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ) |
7 |
3 6
|
anbi12d |
⊢ ( 𝑥 = 𝑂 → ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥 ) ↔ ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ) ) |
8 |
|
fveq1 |
⊢ ( 𝑥 = 𝑂 → ( 𝑥 ‘ ∅ ) = ( 𝑂 ‘ ∅ ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑥 = 𝑂 → ( ( 𝑥 ‘ ∅ ) = 0 ↔ ( 𝑂 ‘ ∅ ) = 0 ) ) |
10 |
7 9
|
anbi12d |
⊢ ( 𝑥 = 𝑂 → ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ↔ ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ) ) |
11 |
|
fveq1 |
⊢ ( 𝑥 = 𝑂 → ( 𝑥 ‘ 𝑧 ) = ( 𝑂 ‘ 𝑧 ) ) |
12 |
|
fveq1 |
⊢ ( 𝑥 = 𝑂 → ( 𝑥 ‘ 𝑦 ) = ( 𝑂 ‘ 𝑦 ) ) |
13 |
11 12
|
breq12d |
⊢ ( 𝑥 = 𝑂 → ( ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) ↔ ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ) |
14 |
13
|
ralbidv |
⊢ ( 𝑥 = 𝑂 → ( ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ) |
15 |
5 14
|
raleqbidv |
⊢ ( 𝑥 = 𝑂 → ( ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑥 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ) |
16 |
10 15
|
anbi12d |
⊢ ( 𝑥 = 𝑂 → ( ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑥 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) ) ↔ ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ) ) |
17 |
2
|
pweqd |
⊢ ( 𝑥 = 𝑂 → 𝒫 dom 𝑥 = 𝒫 dom 𝑂 ) |
18 |
|
fveq1 |
⊢ ( 𝑥 = 𝑂 → ( 𝑥 ‘ ∪ 𝑦 ) = ( 𝑂 ‘ ∪ 𝑦 ) ) |
19 |
|
reseq1 |
⊢ ( 𝑥 = 𝑂 → ( 𝑥 ↾ 𝑦 ) = ( 𝑂 ↾ 𝑦 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑥 = 𝑂 → ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) = ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) |
21 |
18 20
|
breq12d |
⊢ ( 𝑥 = 𝑂 → ( ( 𝑥 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ↔ ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑥 = 𝑂 → ( ( 𝑦 ≼ ω → ( 𝑥 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) ↔ ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) |
23 |
17 22
|
raleqbidv |
⊢ ( 𝑥 = 𝑂 → ( ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) |
24 |
16 23
|
anbi12d |
⊢ ( 𝑥 = 𝑂 → ( ( ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑥 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) ) ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) ) |
25 |
|
df-ome |
⊢ OutMeas = { 𝑥 ∣ ( ( ( ( 𝑥 : dom 𝑥 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥 ) ∧ ( 𝑥 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑥 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑥 ‘ 𝑧 ) ≤ ( 𝑥 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑥 ( 𝑦 ≼ ω → ( 𝑥 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑥 ↾ 𝑦 ) ) ) ) } |
26 |
24 25
|
elab2g |
⊢ ( 𝑂 ∈ 𝑉 → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) ) |