Metamath Proof Explorer


Theorem isome

Description: Express the predicate " O is an outer measure." Definition 113A of Fremlin1 p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion isome OVOOutMeasO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy

Proof

Step Hyp Ref Expression
1 id x=Ox=O
2 dmeq x=Odomx=domO
3 1 2 feq12d x=Ox:domx0+∞O:domO0+∞
4 2 unieqd x=Odomx=domO
5 4 pweqd x=O𝒫domx=𝒫domO
6 2 5 eqeq12d x=Odomx=𝒫domxdomO=𝒫domO
7 3 6 anbi12d x=Ox:domx0+∞domx=𝒫domxO:domO0+∞domO=𝒫domO
8 fveq1 x=Ox=O
9 8 eqeq1d x=Ox=0O=0
10 7 9 anbi12d x=Ox:domx0+∞domx=𝒫domxx=0O:domO0+∞domO=𝒫domOO=0
11 fveq1 x=Oxz=Oz
12 fveq1 x=Oxy=Oy
13 11 12 breq12d x=OxzxyOzOy
14 13 ralbidv x=Oz𝒫yxzxyz𝒫yOzOy
15 5 14 raleqbidv x=Oy𝒫domxz𝒫yxzxyy𝒫domOz𝒫yOzOy
16 10 15 anbi12d x=Ox:domx0+∞domx=𝒫domxx=0y𝒫domxz𝒫yxzxyO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOy
17 2 pweqd x=O𝒫domx=𝒫domO
18 fveq1 x=Oxy=Oy
19 reseq1 x=Oxy=Oy
20 19 fveq2d x=Osum^xy=sum^Oy
21 18 20 breq12d x=Oxysum^xyOysum^Oy
22 21 imbi2d x=Oyωxysum^xyyωOysum^Oy
23 17 22 raleqbidv x=Oy𝒫domxyωxysum^xyy𝒫domOyωOysum^Oy
24 16 23 anbi12d x=Ox:domx0+∞domx=𝒫domxx=0y𝒫domxz𝒫yxzxyy𝒫domxyωxysum^xyO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy
25 df-ome OutMeas=x|x:domx0+∞domx=𝒫domxx=0y𝒫domxz𝒫yxzxyy𝒫domxyωxysum^xy
26 24 25 elab2g OVOOutMeasO:domO0+∞domO=𝒫domOO=0y𝒫domOz𝒫yOzOyy𝒫domOyωOysum^Oy