Step |
Hyp |
Ref |
Expression |
1 |
|
omef.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
omef.x |
⊢ 𝑋 = ∪ dom 𝑂 |
3 |
|
isome |
⊢ ( 𝑂 ∈ OutMeas → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) ) |
5 |
1 4
|
mpbid |
⊢ ( 𝜑 → ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) |
6 |
5
|
simplld |
⊢ ( 𝜑 → ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ) |
7 |
6
|
simplld |
⊢ ( 𝜑 → 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ) |
8 |
2
|
pweqi |
⊢ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
9 |
|
simp-4r |
⊢ ( ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) → dom 𝑂 = 𝒫 ∪ dom 𝑂 ) |
10 |
5 9
|
syl |
⊢ ( 𝜑 → dom 𝑂 = 𝒫 ∪ dom 𝑂 ) |
11 |
8 10
|
eqtr4id |
⊢ ( 𝜑 → 𝒫 𝑋 = dom 𝑂 ) |
12 |
11
|
feq2d |
⊢ ( 𝜑 → ( 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ↔ 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ) ) |
13 |
7 12
|
mpbird |
⊢ ( 𝜑 → 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |