Metamath Proof Explorer


Theorem omef

Description: An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omef.o ( 𝜑𝑂 ∈ OutMeas )
omef.x 𝑋 = dom 𝑂
Assertion omef ( 𝜑𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 omef.o ( 𝜑𝑂 ∈ OutMeas )
2 omef.x 𝑋 = dom 𝑂
3 isome ( 𝑂 ∈ OutMeas → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ) ) )
4 1 3 syl ( 𝜑 → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ) ) )
5 1 4 mpbid ( 𝜑 → ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ) )
6 5 simplld ( 𝜑 → ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) )
7 6 simplld ( 𝜑𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) )
8 2 pweqi 𝒫 𝑋 = 𝒫 dom 𝑂
9 simp-4r ( ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ) → dom 𝑂 = 𝒫 dom 𝑂 )
10 5 9 syl ( 𝜑 → dom 𝑂 = 𝒫 dom 𝑂 )
11 8 10 eqtr4id ( 𝜑 → 𝒫 𝑋 = dom 𝑂 )
12 11 feq2d ( 𝜑 → ( 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ↔ 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ) )
13 7 12 mpbird ( 𝜑𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) )